
EBOOK IaC

sudo apt-get update && sudo apt-get install -y gnupg software-properties-common
curl curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add - sudo
apt-add-repository "deb [arch=amd64] https://apt.releases.hashicorp.com $(lsb_re-
lease -cs) main"sudo apt-get update && sudo apt-get install terraform in-
ode_pat_token="dfa2fa4sfda3377cd25a6054 ae10c5dbce33be7c6573829c4602bb0c78d4be4"-
authorized_key="ssh-rsatruncated.... j@cfe.lan"root_user_p
="Er-WROP0OdRa0Aa23ZNJXRPW3t3hLdHA7oYsHqIaqB8"provider "linode" {token = var.lin-
ode_pat_token } resource "linode_instance" "cfe-pyapp" {count = "1"image = "lin-
ode/ubuntu20.04"label = "pyapp-${count.index + 1}"group = "CFE-Learner"region =
"us-east"type = "g6-nanode-1"authorized_keys = [var.authorized_key] root_pass =
var.root_user_pw tags = ["python", "cfe"] }variable "linode_pat_token" {sensitive
= true } variable "authorized_key" {sensitive = true } variable "root_user_pw"
{sensitive = true } Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Outputs: webapp_first_host = "pyapp-1 : 172.104.214.89"webapp_hosts = ["pyapp-1 :
172.104.214.89",] terraform {required_version = ">= 0.15"required_providers {linode
= {source = "linode/linode"version = "1.22.0"} } backend "s3" {skip_credentials_val-
idation = true skip_region_validation = true } } resource "linode_instance"
"cfe-pyapp" {count = "1"image = "linode/ubuntu20.04"label = "pyapp-${count.index +
1}"group = "CFE-Learner"region = "us-east"type = "g6-nanode-1"authorized_keys = [
var.authorized_key] root_pass = var.root_user_pw tags = ["python", "cfe"] provi-
sioner "remote-exec" {connection {host = "${self.ip_address}"type = "ssh"us-
er = "root"password = "${var.root_user_pw}"} inline = ["sudo apt-get update",
"curl -fsSL https://get.docker.com -o get-docker.sh", "sudo sh get-docker.sh"] } }
resource "linode_instance" "cfe-pyapp" {count = "1"image = "linode/ubuntu20.04"la-
bel = "pyapp-${count.index + 1}"group = "CFE-Learner"region = "us-east"type =
"g6-nanode-1"authorized_keys = [var.authorized_key] root_pass = var.root_user_pw

sudo apt-get update && sudo apt-get install -y gnupg software-properties-common
curl curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add - sudo
apt-add-repository "deb [arch=amd64] https://apt.releases.hashicorp.com $(lsb_re-
lease -cs) main"sudo apt-get update && sudo apt-get install terraform in-
ode_pat_token="dfa2fa4sfda3377cd25a6054 ae10c5dbce33be7c6573829c4602bb0c78d4be4"-
authorized_key="ssh-rsatruncated.... j@cfe.lan"root_user_p
="Er-WROP0OdRa0Aa23ZNJXRPW3t3hLdHA7oYsHqIaqB8"provider "linode" {token = var.lin-
ode_pat_token } resource "linode_instance" "cfe-pyapp" {count = "1"image = "lin-
ode/ubuntu20.04"label = "pyapp-${count.index + 1}"group = "CFE-Learner"region =
"us-east"type = "g6-nanode-1"authorized_keys = [var.authorized_key] root_pass =
var.root_user_pw tags = ["python", "cfe"] }variable "linode_pat_token" {sensitive
= true } variable "authorized_key" {sensitive = true } variable "root_user_pw"
{sensitive = true } Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Outputs: webapp_first_host = "pyapp-1 : 172.104.214.89"webapp_hosts = ["pyapp-1 :
172.104.214.89",] terraform {required_version = ">= 0.15"required_providers {linode
= {source = "linode/linode"version = "1.22.0"} } backend "s3" {skip_credentials_val-
idation = true skip_region_validation = true } } resource "linode_instance"
"cfe-pyapp" {count = "1"image = "linode/ubuntu20.04"label = "pyapp-${count.index +
1}"group = "CFE-Learner"region = "us-east"type = "g6-nanode-1"authorized_keys = [
var.authorized_key] root_pass = var.root_user_pw tags = ["python", "cfe"] provi-
sioner "remote-exec" {connection {host = "${self.ip_address}"type = "ssh"us-
er = "root"password = "${var.root_user_pw}"} inline = ["sudo apt-get update",
"curl -fsSL https://get.docker.com -o get-docker.sh", "sudo sh get-docker.sh"] } }
resource "linode_instance" "cfe-pyapp" {count = "1"image = "linode/ubuntu20.04"la-
bel = "pyapp-${count.index + 1}"group = "CFE-Learner"region = "us-east"type =
"g6-nanode-1"authorized_keys = [var.authorized_key] root_pass = var.root_user_pw

by Justin Mitchel

������ �������� ��������
A step-by-step IaC guide for Terraform, Ansible, Puppet, Chef and Salt

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Infrastructure
as Code

by

Justin Mitchel

Akamai Technologies

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Infrastructure as Code
Justin Mitchel

© 2022 Akamai Technologies

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form by any means, electronic, mechanical,
photocopying, recording or otherwise without the prior permission of the
publisher or in accordance with the provision of the Copyright, Design and Patents
Act 1988 or under the terms of any license permitting limited copying issued by the
Copyright Licensing Agency.

Published by:
Akamai Technologies
249 Arch Street
Philadelphia, PA 19106

Typesetting: Reba Cooke, Jill McCoach
Cover design: Mitch Donaberger
Special thanks: Andy Stevens, Timothy Ryan, Blair Lyon, Rob Yoegel, Hillary
Wilmoth, Maddie Presland, Justin Cobbett, Nathan Melehan and many, many
more.

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Dedicated to

To my wife, Emilee – Thank you for the love, support,

and encouragement all these years.

You are my guiding light and my everything.

To my kids, McKenna, Dakota, & Emerson – Thank you for the

unconditional love and joy you bring to my life. I am proud

of the girls you are and the women you will become.

I love you all and am so grateful to live this life with you.

I also can’t wait for our next adventure!

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Table of Contents
Chapter 1: Introduction. . 08

Welcome to Try Infrastructure as Code. 09

Everything as Version Control . . 10

Chapter 2: How to use this Book . . 11

Chapter 3: References. . 13

Chapter 4: Terraform. 15

Install Terraform. 17

Clone Sample Python Web App. . 18

Create Terraform Root. . 222\18

Initialize Terraform for Linode . . 19

Linode API Token and terraform.tfvars . 20

Prepare for a Linode Virtual Machine . 23

Using Variables in Terraform . . 24

Terraform Plan. 25

Terraform Apply & Destroy. 25

Terraform Apply . 25

Terraform Destroy. 26

Auto Approve. 26

Return Values with output.tf . . 26

Introducing Terraform State. 29

Create a Linode Object Storage Bucket. 30

Create Terraform Backend for Cloud-Based Terraform State. 31

Update gitignore. 31

Update main.tf to Include . 32

Initialize our New Backend. . 32

Provisioning with Terraform for Docker. 32

Provision with Scripts . . 35

Terraform Locals. 36

Built-in Terraform Functions . . 38

Copy Directories to Instances. 38

The Biggest Terraform Flaw. 41

Docker & Terraform. 41

Adding Instances . . 45

Provision Node Balancers with Terraform. . 48

Using Templates with Terraform. 51

Terraform & GitHub Actions. 55

Clean Up. 59

X

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 5: Ansible. . 60

Getting Started & Core Installations. 62

Clone the Sample Python Web App . 63

Create a Python Virtual Environment & Install Ansible 64

Inventory & Provision Instances on Linode. . 66

Your First Playbook . 66

Default Ansible Configuration - ansible.cfg . . 68

Replace Remote Files with Ansible. 69

Using Templates with Playbooks. 71

Using Variables in Templates . 72

Configure Multiple Hosts. 74

Inventory Groups & Load Balancing. 76

Import Playbooks. 80

Ansible Role Basics . 82

Ansible Handlers. 84

Handlers in Roles. . 86

Install Docker via Role. . 87

Purging Packages with Roles . 91

Docker-based Nginx Load Balancer . 93

Using Facts & Variables. 95

Docker Container Roles . . 97

Copy Web App Project. . 100

Build & Run our Web Apps. 101

Bonus: Automate with GitHub Actions. . 104

Bonus 2: Integrating Ansible & Terraform. 106

Chapter 6: Chef. . 108

Linode Configurations . 109

Install Chef Infra Server . . 113

Configure Chef Workstation. 115

Fetch Chef-Server Certs . . 118

Verify config.rb. 118

Configure Chef Node from your Chef Workstation 119

Let’s Get Practical . 122

Docker - Pros & Cons in our Recipes. 128

Update Nodes. . 129

Review our Node . . 131

Chef Supermarket. 131

Next Steps. 133

XI

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 7: Puppet Bolt. . 134

Provsion Linode Instances. 135

Install Puppet on your Workstation. . 135

Create Puppet Bolt Project . . 137

Add our Inventory. 138

New SSH Keys. . 139

Update Inventory. . 141

Your First Bolt Module . . 142

Docker Module. 145

Creating our the `pyapp` Module. 150

Clean Up. 154

Chapter 8: Salt & the Saltstack . . 155

Provision Linode Instances. . 156

Create Your First Minion Virtual Machine. 158

Docker & Salt. 165

Templates & Salt. 168

To Clone or not to Clone? . . 170

Build Docker Image with Salt. 171

The Salt Top File. 174

But, the Docker Run Command! . 175

Using Pillars . . 178

Thank you . . 181

Appendix A: Add SSH Keys to the Linode Console. . 182

Appendix B: Generate SSH Keys. . 187

Appendix C: Create a Remote Workstation. . 191

Appendix D: Create a Password with Python . . 199

Appendix E: Create a Linode API Token . . 202

Appendix F: Create a Linode Object Storage Bucket. . 205

Appendix G: Minor Installations. . 209

Appendix H: Docker & Python Web Apps . . 211

Appendix I: Basic Bash Scripts Arguments & Conditions . . 214

Appendix J: Cloning a Private Github Repo . . 217

XII

 | 9

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 1

Introduction

Welcome to Try Infrastructure as Code
Modern Infrastructure as Code (or IaC for short) tools provide a reliable way to maintain the state that you need
your infrastructure to be in; it’s a document-based accounting for:

	● What you need: the number of virtual machines, load balancers, object storage buckets, etc.
	● How you need them: Python 3.9, Nginx, Ubuntu 20.04 LTS installed with ACL controls, SSH keys, etc.
	● How to scale them (up or down) reliably and predictably. The best part is many of them are cloud provider

agnostic and can include on-premise services.

Document-based: most software applications are written with a bunch of documents, this includes collections of
Python (.py), JavaScript (.js), C++ (.cpp), Swift (.swift), Java (.java) or other files. Most programming lan-
guages are imperative - this means you write the logic for each step needed to get a result. IaC tools, on the other
hand, are declarative - so you write the results you want, regardless of the logic to get there.

Document-based tools allow you to leverage version control (as in git). Version control is a tool that enables you
to track changes in a document over time.

At a glance, you should be able to tell exactly what a document does:

main.yaml

- hosts: all

 becomte: yes

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

Above is an example ansible document. Can you guess what it does?

Chapter 1: Introduction - Welcome

 | 10

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

main.tf

resource “linode_instance” “cfe-pyapp” {

 count = 3

 image = “linode/ubuntu20.04”

 label = “app-${count.index + 1}”

 group = “project”

 region = “us-east”

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

 root_pass = var.root_user_pw

 tags = []

}

Above is an example terraform document. Can you guess what it does?

The above examples help illustrate a point: learning about IaC and IaC tools is important.

Everything as Version Control
Version control helps address several major issues:

	● Accidental code deletion
	● Secure & safe sharing of code and secrets
	● Secure & safe contribution from people everywhere (internal and external)
	● Computer(s) damaged / lost / stolen
	● Key team member (or employee) leaves the team
	● Key team members lack technical skills
	● Key services shut down, fail to perform well, or can no longer be used

Version control, in my opinion, is what catapults IaC tools from a niche activity to a mainstream requirement for
organizations: managers have granular control of provisioned resources while maintaining strong integrity in the
system itself. IaC tools require only a minimal background in software engineering and DevOps (to manage and
even build).

Chapter 1: Introduction - Everything as Version Control

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 | 12

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 2

How to use this Book
This book is a step-by-step guide for you to learn how to use some of the most in-demand IaC tools that exist. As
of this writing, those tools are:

	● Terraform
	● Ansible
	● Puppet (and Puppet Bolt)
	● Chef
	● Salt (aka SaltStack)

I recommend you go through the entire book to get a sense of what each technology is all about and how it
might fit into what you do. If you’re impatient, you can always choose a single tool to use.

Each tool is covered as a mostly stand-alone project that focuses on deploying a simple Docker-based Python
web application from Github.

Chapter 2: How to use this Book

https://github.com/codingforentrepreneurs/iac-python

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 | 14

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 3

References
Each IaC tool has official documentation, and so does the code we use in this book. The GitHub repo will have
the most up-to-date code for each section unless a major re-write occurs.

Terraform
	● GitHub repo: https://github.com/codingforentrepreneurs/iac-terraform
	● Official documentation: https://www.terraform.io/docs

Ansible
	● GitHub repo: https://github.com/codingforentrepreneurs/iac-ansible
	● Official documentation: https://docs.ansible.com/ansible/latest/index.html

Puppet (Puppet Bolt)
	● GitHub repo: https://github.com/codingforentrepreneurs/iac-puppet
	● Official documentation: https://puppet.com/docs/bolt/latest/bolt.html

Chef
	● GitHub repo: https://github.com/codingforentrepreneurs/iac-chef
	● Official documentation:

	◦ Chef Infra Server: https://docs.chef.io/server/
	◦ Chef Infra: https://docs.chef.io/chef_overview/
	◦ Chef Workstation: https://docs.chef.io/workstation/

Salt (aka: SaltStack)
	● GitHub repo: https://github.com/codingforentrepreneurs/iac-salt
	● Official documentation: https://docs.saltproject.io/en/latest/contents.html

Chapter 3: References

https://github.com/codingforentrepreneurs/iac-python
https://www.terraform.io/docs
https://github.com/codingforentrepreneurs/iac-ansible
https://docs.ansible.com/ansible/latest/index.html
https://github.com/codingforentrepreneurs/iac-puppet
https://puppet.com/docs/bolt/latest/bolt.html
https://github.com/codingforentrepreneurs/iac-chef
https://docs.chef.io/server/
https://docs.chef.io/chef_overview/
https://docs.chef.io/workstation/
https://github.com/codingforentrepreneurs/iac-salt
https://docs.saltproject.io/en/latest/contents.html

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 | 16

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 4

Terraform
Before we jump in, let’s look at a fairly straightforward scenario for an app you’re working on:

	● Three web servers (i.e Gunicorn & Django)
	● A load balancer (i.e NGINX)
	● A database server (i.e Postgres)

Wouldn’t it be nice if you could say “apply” and your cloud provider made that happen for you? Now, let’s say a
few months go by and you want to add:

	● A datastore server (i.e Redis)
	● Two microservice servers (i.e FastAPI & Flask)

Again, let’s say “apply” and make it happen. Now, after some more time and even more traffic, we decide we
want:

	● Four web servers (i.e Gunicorn & Django)
	● A load balancer (i.e NGINX)
	● A database server (i.e Postgres)
	● A datastore server (i.e Redis)
	● A microservice server (i.e FastAPI)

If you have managed virtual machines from a cloud service provider, you know how common the above scenario
is.

Handling these kinds of changes can be done in two ways:
	● Manually through the console
	● Automatically through Terraform

First, let’s pose a few questions about the manual option:
	● What if the UI changes and a simple fix takes 5-25 minutes to figure out?
	● What if you have several people needing different kinds of compute resources on your team? Do they all

log in and provision resources themselves?
	● What if while your DevOps guy is unreachable on a 48-hour flight around the earth, you urgently need to

reconfigure your environment?
	● What if your CEO accidentally turns off all your virtual machines because they assumed they had logged in

to a personal account?
	● How do you track what resource(s) are you currently using? Through invoices alone? How do you audit

said invoices?

We can add a long list of what-ifs here, but the fact of the matter is this:
	● Everything that can be code, should be code.
	● Everything that you can track through version control, aka Git, should be tracked through version control.
	● Everything that you can automate, should be automated.

Chapter 4: Terraform

 | 17

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform has won me over in a big way, not because of Terraform per se, but because the notion of provisioning
required cloud resources through a document (like .yaml, .hcl, .json, etc.) is absolutely a win for us all; especially
teams that lack true DevOps or Ops people.

Let’s look at Terraform and see why.

Install Terraform
All official installation options are here.

macOS via Homebrew

brew tap hashicorp/tap

brew install hashicorp/tap/terraform

Windows via Chocolatey

choco install terraform

Linux (Ubuntu / Debian)

sudo apt-get update && sudo apt-get install -y gnupg software-properties-common curl

curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add -

sudo apt-add-repository “deb [arch=amd64] https://apt.releases.hashicorp.com

$(lsb_release -cs) main”

sudo apt-get update && sudo apt-get install terraform

Verify Installation

terraform -help

Chapter 4: Terraform - Install Terraform

https://learn.hashicorp.com/tutorials/terraform/install-cli
http://brew.hs
https://chocolatey.org/

 | 18

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Clone Sample Python Web App

cd /path/to/your/project/folder/

We need to clone the following project:

git clone https://github.com/codingforentrepreneurs/iac-python

Remove the cloned .git repo:

rm -rf .git

Re-initialize this project as your Git project:

git init

git add --all

git commit -m “Initial Project”

The key to this sample code is that it is a Docker project.

Create Terraform Root
Create the root directory for our Terraform files (aka hcl files)

mkdir -p ./devops/tf/

cd ./devops/tf

File names are very important with Terraform. Here’s what we’ll cover (but not in this order):
	● main.tf
	● output.tf
	● terraform.tfvars
	● variables.tf
	● backend (without .tf)

Chapter 4: Terraform - Clone Sample Python Web App / Create Terraform Root

https://github.com/codingforentrepreneurs/iac-python
https://www.docker.com/

 | 19

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Current project structure

cd /path/to/your/project/folder/

tree .

.

├── .gitignore

├── Dockerfile

├── README.md

├── devops

│ └── tf

├── docker-compose.yaml

├── entrypoint.sh

├── nginx

│ ├── Dockerfile

│ └── nginx.conf

├── pytest.ini

├── pyvenv.cfg

├── requirements.txt

├── runtime.txt

└── src

 ├── __init__.py

 ├── main.py

 └── test_views.py

To install the command tree, review Appendix G.

Initialize Terraform for Linode
We need to map our iteration of Terraform with the Linode Provider Docs.
First, create the file main.tf :

touch main.tf

Within, main.tf update it to:

terraform {

 required_version = “>= 0.15”

 required_providers {

Chapter 4: Terraform - Create Terraform Root / Initialize Terraform for Linode

https://registry.terraform.io/providers/linode/linode/latest/docs

 | 20

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 linode = {

 source = “linode/linode”

 version = “1.25.0”

 }

 }

}

As of now, we have just one file: main.tf. This file lays the foundation for the required providers, which is Linode
in this case. There are a lot of providers listed on the Terraform Registry. Some providers are officially supported
by HashiCorp (the Terraform maintainers), while other providers are supported directly by the developers who
built them.

Linode maintains the Linode Provider for Terraform, which you can see in the registry docs for the
Linode Provider.

After you have the above module created, run:

terraform init

Did you see the message Terraform has been successfully initialized! ? If so, we can move on. If not, do not pro-
ceed until you do. My example may use versions that are no longer supported.

Linode API Token and terraform.tfvars
terraform.tfvars is a file to store any secrets Terraform may need, like your API tokens. For a detailed reference
on creating a Linode Personal Access Token (aka _API Token_) review Appendix E.

Step 1
Add .tfvars to your .gitignore file (or just copy this reference). If you don’t have a .gitignore file, add one to your
project now.

Step 2
Login or sign up on linode

Step 3
Navigate to API Tokens

Chapter 4: Terraform - Initialize Terraform for Linode / Linode API Token and terraform.tfvars

https://registry.terraform.io/
https://registry.terraform.io/providers/linode/linode/latest/docs
https://raw.githubusercontent.com/github/gitignore/master/Terraform.gitignore
http://linode.com/cfe
https://cloud.linode.com/profile/tokens

 | 21

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Step 4
Create a Personal Access Token

	● Label: PyTerra (or call it what you want)
	● Expiry: In 6 months (Choosing never is rarely recommended)
	● Access:

	◦ - Domains: Read/Write
	◦ - Events: Read/Write
	◦ - Images: Read/Write
	◦ - IPs: Read/Write
	◦ - Linodes: Read/Write
	◦ - Node Balancers: Read/Write
	◦ - Object Storage: Read/Write
	◦ - Volumes: Read/Write

Step 5
Copy personal access token → if you lose it, generate a new one using steps 1-3. Do not share this code
with anyone.

Step 6
Add this token to a terraform-specific variables file.

touch terraform.tfvars

In terraform.tfvars add:

linode_pat_token=”<your-personal-access-token-from-step-4>”

Be sure to use quotes, like linode_pat_token=”dfa2fa4sfda3377cd25a6054cae10c5dbce33be7c6573829c4602bb-
0c78d4be4”

Step 7
Copy your local SSH Public Key:

View Local SSH Key

cat ~/.ssh/id_rsa.pub

Don’t have an ssh key yet? Use the command ssh-keygen or follow Appendix B.

Chapter 4: Terraform - Linode API Token and terraform.tfvars

 | 22

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

SSH Key Copy Shortcuts

macOS/Linux

cat ~/.ssh/id_rsa.pub | pbcopy

Windows

type ~\.ssh\id_rsa.pub | clip

Now in terraform.tfvars add:

authorized_key = “ssh-rsa your-public-rsa-key value -it should be long”

Step 8
Create a root_user_pw password for the terraform.tfvars

For a detailed guide on generating a password, review Appendix D.

#python3

import secrets

print(secrets.token_urlsafe(32))

root_user_pw=”<your-new-root-user-password>”

Your terraform.tfvars should be in the directory devops/tf/terraform.tfvars , and look something like:

linode_pat_token=”dfa2fa4sfda3377cd25a6054cae10c5dbce33be7c6573829c4602bb0c78d4be4”

authorized_key=”ssh-rsatruncated.... j@cfe.lan”

root_user_pw=”Er-WROP0OdRa0Aa23ZNJXRPW3t3hLdHA7oYsHqIaqB8”

Chapter 4: Terraform - Linode API Token and terraform.tfvars

 | 23

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Prepare for a Linode Virtual Machine
Without doing anything else with Terraform, let’s see it in action.

Under the terraform {} declaration in main.tf add the following:

provider “linode” {

 token = var.linode_pat_token

}

resource “linode_instance” “cfe-pyapp” {

 count = “1”

 image = “linode/ubuntu20.04”

 label = “pyapp-${count.index + 1}”

 group = “CFE-Learner”

 region = “us-east”

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

 root_pass = var.root_user_pw

 tags = [“python”, “cfe”]

}

Let’s unpack this:
	● provider “linode” {token = var.linode_pat_token} : This configures the Linode provider to use the var .

linode_pat_token item (we’ll discuss variables below).
	● resource “linode_instance” : this comes directly from the linode provider we added above
	● resource “linode_instance” “cfe-pyapp” : the cfe-pyapp of this statement must be unique across your

entire terraform project.
	● count = “1” : this will create only 1 instance of this resource. In this case, the resource is a linode_instance

with the name cfe-pyapp
	● image = “linode/ubuntu20.04” : this Linode image uses ubuntu20.04 . There’s a lot of options here that are

directly from Linode.
	◦ �To get the offered Linode image distributions, you can go to this link or run curl https://api.linode.com/

v4/images | python3 -m json.tool
	● label = “pyapp-${count.index + 1}” : this is a unique label for each instance of this resource. If count=”1”

was not on this resource, you would not have access to ${count.index} like we do here.
	● group = “CFE-Learner” : Label the group as you wish, CFE-Learner` is arbitrary.
	● region = “us-east” : us-east is an official region from Linode.
	● type = “g6-nanode-1” : This is the ID of the type of CPU plan you which to provision. g6-nanode-1 is the

least expensive to test (at the time of this writing, it’s about $5/mo if it runs 24/7 for the whole month).
	◦ �To get Linode instance type(s) ids, you can go to this link or run curl https://api.linode.com/v4/linode/

types | python3 -m json.tool
	● authorized_keys = [var.authorized_key] - authorized_keys refers to actual authorized ssh keys that you

want to provision with this. You can set multiple values for this. In our case, we used just var.authorized_

Chapter 4: Terraform - Prepare for a Linode Virtual Machine

https://api.linode.com/v4/images
https://api.linode.com/v4/linode/types

 | 24

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

key but you could have [var.authorized_key1, var.authorized_key2, authorized_key3] and so on.
	● var.authorized_key : var is a way to access the key/value pairs we stored in terraform.tfvars . So var.

linode_pat_token is the personal access token we set for Linode. var.root_user_pw is the admin user
password (aka root).

	● root_pass = var.root_user_pw : here we set the admin user password. The admin username is typically
root .

	● tags = [“python”, “cfe”] : this is an arbitrary list of tags you can add to this image. These tags are useful
when you have a lot of instances running at any time.

Using Variables in Terraform
Create a variables.tf file:

touch variables.tf

Update variables.tf with:

variable “linode_pat_token” {

 sensitive = true

}

variable “authorized_key” {

 sensitive = true

}

variable “root_user_pw” {

 sensitive = true

}

To use var.root_user_pw and var.authorized_key , we must create the file variables.tf. While it may seem
similar to terraform.tfvars , variables.tf has more configuration options including the ability to set a default
value. Adding variables.tf to your repo is necessary, but remember, you should never add terraform.tfvars to
your Git repo.

Chapter 4: Terraform - Prepare for a Linode Virtual Machine / Using Variables in Terraform

 | 25

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform Plan
Now that we have the following setup:

	● main.tf
	● terraform.tfvars
	● variables.tf

We can run:

terraform plan

If you’ve set everything up correctly, you should see what Terraform wants to do given our configuration files (all
the .tf files).

If the results in terraform plan look like what you intended, let’s run:

Terraform Apply & Destroy
The two simple commands to spin up our infrastructure and take it down are below. I recommend running these
commands several times to see how simple it is to control resources with Terraform. We’re going to be building
on this concept a lot so I want to emphasize, when in doubt just run terraform destroy and start over -- it’s the
best way to learn.

Terraform Apply
Let’s create our instance!

terraform apply

Be sure to type yes when prompted.

Chapter 4: Terraform - Terraform Plan / Terraform Apply & Destroy / Terraform Apply

 | 26

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform Destroy
Let’s destroy our instance!

terraform destroy

Be sure to type yes when prompted.

Auto Approve
To avoid typing yes each time you run terraform apply or terraform destroy use these commands:

terraform apply -auto-approve

or

terraform apply -auto-approve -destroy

Notice that terraform destroy is just a shortcut to writing terraform apply -destroy.

Important note: resources you provision accrue costs while they are running. It’s a good idea as you learn to
always run terraform destroy on your project.

Return Values with output.tf
How easy was that? You just added and removed an instance with two lines of code.

But something was missing -- what is the IP address of this instance? What if I created more instances? What are
those IP addresses? What are the labels? That’s where the output.tf file comes in:

touch output.tf

Chapter 4: Terraform - Terraform Destroy / Auto Approve / Return Values with output.tf

 | 27

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

output “webapp_first_host” {

 value = “${linode_instance.cfe-pyapp.0.label} : ${linode_instance.cfe-pyapp.0.ip_ad-

dress}”

}

Let’s break down what we see here:
	● output “webapp_first_host” : For this module, we specify the ouput name webapp_first_host . It must be

unique in the module.
	● value = ... this is setting the value of this output.
	● ”${somevar} ${someothervar}” This is how you can do string substitution using variables. It works a little

like bash string substitution.
	● linode_instance.cfe-pyapp.0.label and linode_instance.cfe-pyapp.0.ip_address take a bit more

explanation:
	◦ linode_instance is the resource we defined in main.tf
	◦ cfe-pyapp is the name of the linode_instance resource we defined in main.tf
	◦ �cfe-pyapp.0 in our cfe-pyapp resource, we set count=”1” . Once you do this, the resource becomes an

iterable. In this case, the 0 refers to the zeroth element (aka first iteration) of resources.
	◦ �cfe-pyapp.0.label and cfe-pyapp.0.ip_address are referring to fields that are generated by the

linode_instance.

Above we only declared one value. We can also include a loop of all the instances created as a result of the
linode_instance set to anything other than count=”1” :

output “webapp_hosts” {

 value = [for host in linode_instance.cfe-pyapp.*: “${host.label} : ${host.ip_address}”]

}

Now let’s apply this Terraform configuration:

terraform plan

You’ll see something like:

Plan: 1 to add, 0 to change, 0 to destroy.

Changes to Outputs:

 + webapp_first_host = (known after apply)

 + webapp_hosts = [

Chapter 4: Terraform - Return Values with output.tf

 | 28

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 + (known after apply),

]

Now let’s apply this:

terraform apply

You should see the same results from terraform plan before you write `yes`.

After apply finishes, you should see the outputs:

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

webapp_first_host = “pyapp-1 : 172.104.214.89”

webapp_hosts = [

 “pyapp-1 : 172.104.214.89”,

]

How cool is this?

Chapter 4: Terraform - Return Values with output.tf

 | 29

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Introducing Terraform State

“And then you get on the plane. The pilot, of course, has to always come on the P.A.
system. This guy is so excited about being a pilot. He cannot even stand himself, ‘Well,

I am going to take it up to about 20,000. And then I’m going to make a left by Pitts-
burgh. And then I’m gonna make a right by Chicago. And then I’m gonna bring down

15,000.’ He gives you the whole route and all his moves. We are in the back going,
‘Yeah, fine. That’s all... You know. Do whatever the hell you gotta do. I don’t know.

Just end up where it says on the ticket, really.”

Jerry Seinfeld

To me, this is a great metaphor for declarative programming like Terraform. You buy the ticket to go to
someplace, and the actual logistics of how the plane gets there doesn’t matter much to you so long you get to
your destination. The pilot, like Terraform, needs to know all the details about how to get there, and how to
reverse course if needed.

The same pilot, however, does not care if you’re opening a bag of peanuts, or if you are watching a nearly
30-year-old TV show. The pilot does have instructions to pass out the snacks but, the pilot has no idea if you ate
them. Once you arrive at your destination, the pilot does not care what you do. When you come back with a new
destination and a new ticket (even if it’s back home), the pilot’s work can begin again.

Terraform provisions your infrastructure:
	● How many servers do you need?
	● What kind of image?
	● How big should it be?
	● What labels do you want?
	● What tags are you using?
	● Do you need to update memory or CPUs?
	● Do you need a different OS image?
	● Do you need object storage?
	● Do you need another service from another cloud provider?
	● Do you need to include coworkers’ SSH keys?

Terraform gets you to your destination, including installing things along the way. Terraform will not install things
after you reach your destination unless you make significant changes to any given resource. In this case, the
original resource will be replaced with a new one; the old resource will be removed completely.

Chapter 4: Terraform - Introducing Terraform State

 | 30

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Here’s another way to frame it.
	● I need a server. Great, here’s Terraform.
	● I need a server with Docker installed. Great, here’s Terraform.
	● I need fifty servers with Docker installed. Great, here’s Terraform. Six months later, on those same servers,

I need to uninstall Docker without taking down those servers. Oops, that’s not Terraform.

Terraform is declarative. You tell it what you want the infrastructure state to be and the tool gets the job done. It’s
about the result, not the steps to get there.

Python is imperative. You tell the computer what you want it to do when something happens; it’s all step-by-
step, you design what the result should be.

Terraform is declarative, so it needs to manage the current infrastructure state before it knows if changes need
to be made. The command terraform plan shows you the results of tracking the current state. Let’s be clear,
Terraform tracks the current state so long you use Terraform to modify the state. If you destroy a resource outside
Terraform, the state will not be updated automatically. You can update the state in Terraform with terraform
apply -refresh-only -auto-approve , but we’ll leave that for another time.

This idea also extends to what happens within any given terraform provisioned resource. As far as Terraform is
concerned, once the infrastructure has been applied successfully (terraform apply), its job is done.

Without additional configuration, terraform apply will create a terraform.tfstate file in your local project. We
want to use a cloud-based state file so terraform apply runs nearly anywhere.

Create a Linode Object Storage Bucket
For a more detailed look, review Appendix F.

1.	 Log in to the Linode console
2.	 Create a new bucket in Object Storage
3.	 Create Access Keys with read/write access to your created bucket

Chapter 4: Terraform - Introducing Terraform State / Create a Linode Object Storage Bucket

https://cloud.linode.com
https://cloud.linode.com/object-storage/buckets
https://cloud.linode.com/object-storage/access-keys

 | 31

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 4: Terraform - Create Terraform Backend for Cloud-Based Terraform State / Update gitignore

Create Terraform Backend for Cloud-Based
Terraform State
To manage our state file through Linode Object Storage, add a new file called backend (no extension):

touch backend

In our backend file we’ll add the following:

skip_credentials_validation = true

skip_region_validation = true

bucket=”yourbucket”

key=”your-terraform.tfstate”

region=”us-southeast-1”

endpoint=”us-southeast-1.linodeobjects.com”

access_key=”your_access_key”

secret_key=”your_secret_key”

Let’s break this down:
	● skip_credentials_validation and skip_region_validation are fundamentally for a service different than

Linode; that’s why we will skip them.
	● bucket is the name of the bucket you created in Step 12.
	● key is how you want to store your state file. I have a bucket just for my Terraform project.
	● region is the region your bucket was created in Step 12.
	● endpoint is the endpoint for your bucket; it’s typically the region id and linodeobjects.com (on Linode,

you can remove the bucket name from this endpoint.
	● access_key is the public key to access your bucket
	● secret_key is the secret key to access your bucket. Keep this safe.

Update gitignore

echo “backend” >> .gitignore

Important note: It’s critical to keep secret keys out of version control. The backend file is essentially a file we
need to keep hidden.

 | 32

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Update main.tf to Include:

terraform {

 required_version = “>= 0.15”

 required_providers {

 linode = {

 source = “linode/linode”

 version = “1.22.0”

 }

 }

 backend “s3” {

 skip_credentials_validation = true

 skip_region_validation = true

 }

}

Initialize our New Backend

terraform init -backend-config=backend

Pro-tip
You can also run terraform -chdir=./devops/tf init -backend-config=backend where -chdir=./
devops/tf allows you to declare where the root of your terraform project is.

After we run this command, terraform will use a cloud-based state file. This is great because we can now share
this terraform project or use it in a CI/CD pipeline or across multiple machines while retaining the correct state of
the entire Terraform project.

Provisioning with Terraform for Docker
Terraform can perform remote execution as well as push files into your resources. In our case here, we’ll use
Terraform to push our code, including docker files, into production as well as run all commands needed to get
the machine fully running.

Terraform can perform these tasks but it will not do it as well as other tools. You’d probably use Terraform with
something like Ansible or SaltStack to ensure your infrastructure is fully provisioned.

Chapter 4: Terraform - Update main.tf to Include: / Initialize our New Backend / Provisioning with Terraform

http://./05-ansible
http://./08-salt

 | 33

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform’s docs state plainly that Provisioners are a Last Resort. That said, we’re going to use them.

No, we’re not using them to stick it to the man, no we’re using them because, in our case, we’re mostly bootstrap-
ping our resource so we need to provision it accordingly.

What does this look like exactly?
	● Update our Ubuntu system packages (apt-get update)
	● Install Docker & docker-compose dependencies
	● Upload our non-public facing code (ie not a public repo on GitHub)
	● Do the above only on creation AND prepare for integration with Ansible for long term management (not in

this guide)

First, let’s do a simple command to update our system:

In main.tf let’s update the following resource:

resource “linode_instance” “cfe-pyapp” {

 count = “1”

 image = “linode/ubuntu20.04”

 label = “pyapp-${count.index + 1}”

 group = “CFE-Learner”

 region = “us-east”

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

 root_pass = var.root_user_pw

 tags = [“python”, “cfe”]

 provisioner “remote-exec” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

 inline = [

 “sudo apt-get update”,

 “curl -fsSL https://get.docker.com -o get-docker.sh”,

 “sudo sh get-docker.sh”

]

 }

}

Chapter 4: Terraform - Provisioning with Terraform for Docker

https://www.terraform.io/docs/language/resources/provisioners/syntax.html

 | 34

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s breakdown the provisioner block:
	● provisioner “remote-exec” this is a way to execute a command on a remote host
	● connection : how should this provisioner execute this command?

	◦ host : using ${self.ip_address} will be autoset for us when we run terraform apply
	◦ �type = “ssh” : we use ssh (aka secure shell). We set the SSH key on authorized_keys = [var.authorized_

key]
	◦ user = “root” : Which use do we want to SSH in with? ie ssh@myip
	◦ password = “${var.root_user_pw}” We set the orginal key on root_pass = var.root_user_pw

	● inline = [] : This is a list of commands you can write, called in order, that you want this remote-exec provi-
sioner to call.

Now run:

terraform apply

Review the plan and type yes

Did Docker Install?
Now use a secure shell to see if Docker was installed successfully. This book is not about Docker, but luckily for
those of us who aren’t familiar with Docker, a simple way to check if its installed is by running:

docker ps

The result should be:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

And not command not found: docker or something similar.

Chapter 4: Terraform - Provisioning with Terraform for Docker

 | 35

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Provision with Scripts
The inlines from above are fine but often not very reusable or testable. That’s why it’s a good idea to use a bash
script instead.

Create a file called bootstrap-docker.sh next to main.tf with the contents:

#!/bin/bash

sudo apt-get update

sudo apt-get install git curl -y

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

If you’re using a Linux workstation (like in Appendix C), you should be able to run this script with: chmod +x
bootstrap-docker.sh && sudo sh bootstrap-docker.sh

Now we can use this script instead of the inlines we had above. Update main.tf with:

resource “linode_instance” “cfe-pyapp” {

 count = “1”

 image = “linode/ubuntu20.04”

 label = “pyapp-${count.index + 1}”

 group = “CFE-Learner”

 region = “us-east”

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

 root_pass = var.root_user_pw

 tags = [“python”, “cfe”]

 provisioner “file” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

Chapter 4: Terraform - Provision with Scripts

 | 36

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 source = “bootstrap-docker.sh”

 destination = “/tmp/bootstrap-docker.sh”

 }

 provisioner “remote-exec” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

 inline = [

 “chmod +x /tmp/bootstrap-docker.sh”,

 “sudo sh /tmp/bootstrap-docker.sh”,

]

 }

}

This introduces the file provisioner and is a simple way to copy a local file or many local files into your in-
stance(s) that you’re provisioning with Terraform.

After using file provisioner we use remote-exec to execute our copied file. Pretty neat right?

Terraform Locals
Before we continue, let’s consider our current project structure:

tree

├── .gitignore

├── Dockerfile

├── README.md

├── devops

│ └── tf

│ ├── backend

│ ├── bootstrap-docker.sh

│ ├── main.tf

│ ├── output.tf

│ ├── terraform.tfstate

│ ├── terraform.tfvars

│ └── variables.tf

Chapter 4: Terraform - Provision with Scripts / Terraform Locals

 | 37

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

├── docker-compose.yaml

├── entrypoint.sh

├── nginx

│ ├── Dockerfile

│ └── nginx.conf

├── pytest.ini

├── pyvenv.cfg

├── requirements.txt

├── runtime.txt

└── src

 ├── __init__.py

 ├── main.py

 └── test_views.py

What we want to do here is include the following to each of our terraformed instance(s):
	● src/ (entire directory)
	● requirements.txt
	● Dockerfile
	● entrypoint.sh

However, main.tf exists in devops/tf/ , not in the root of our project (like next to requirements.txt).

We can use locals to help solve this issue. So in devops/tf/ create a new file called locals.tf with the contents:

locals {

 root_dir = “${abspath(path.root)}”

 devops_dir = “${dirname(local.root_dir)}”

 project_dir = “${dirname(local.devops_dir)}”

 templates_dir = “${local.root_dir}/templates/”

}

Let’s break this down:
	● path.root is the relative path to your Terraform project based on where this module exists (ie where lo-

cals.tf exists in this case).
	● root_dir is an example variable name (ie you can name it what you want) but it’s meant to represent the

absolute path (abspath()) to root of the Terraform directory (ie /Users/cfe/dev/try-terraform/devops/tf
in my case and not just devops/tf). This path will be set correctly even if we move our project, as long as
your locals.tf module is next to main.tf.

	● devops_dir is the parent directory name for the root_dir path variable we set above. dirname() can be
chained together too just like what we see in project_dir

	● project_dir is the root of the entire project. Another way to write this would be ${dirname(dirname(ab-
spath(path.root)))}

Chapter 4: Terraform - Terraform Locals

 | 38

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● templates_dir is something we have yet to implement but it’s just another path that considers the above
steps.

If you’re a Python developer, abspath and dirname are very similar to os.path.abspath and os.path.dirname .

Now, anywhere in your terraform files you can reference:

local.root_dir

or

local.project_dir

To get the respective directories. Keep in mind that a trailing slash will be absent.

Built-in Terraform Functions
Above we used the built-in terraform functions for abspath and dirname. These built-in functions allow us to
limit the amount of hard-coding as much as possible. Instead of having a bunch of variables in terraform.tfvars
we can use a number of the built-in functions.

Copy Directories to Instances
Now that we have locals.tf let’s update main.tf to handle directories relative to our terraform files.

resource “linode_instance” “cfe-pyapp” {

 ...

 provisioner “file” {

 ...

 source = “${local.root_dir}/bootstrap-docker.sh”

 ...

 }

 provisioner “remote-exec” {

Chapter 4: Terraform - Terraform Locals / Built-in Terraform Functions / Copy Directories to Instances

https://www.terraform.io/language/functions
https://www.terraform.io/language/functions/abspath
https://www.terraform.io/language/functions/dirname

 | 39

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 ...

 }

}

Going forward, I’ll use ... to signify lines in main.tf that have remained unchanged.

Now, using file provisioners we can also upload a directory like:

resource “linode_instance” “cfe-pyapp” {

 ...

 provisioner “file” {

 ...

 }

 provisioner “remote-exec” {

 ...

 inline = [

 “chmod +x /tmp/bootstrap-docker.sh”,

 “sudo sh /tmp/bootstrap-docker.sh”,

 “mkdir -p /var/www/src/”,

]

 }

 provisioner “file” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

 source = “${local.project_dir}/src/”

 destination = “/var/www/src/”

 }

}

So uploading directories is as simple as just providing a path to it. The destination must exist (at least the parent
directory) or it may not copy files correctly.

Chapter 4: Terraform - Copy Directories to Instances

 | 40

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now let’s finish adding all of the required files:

resource “linode_instance” “cfe-pyapp” {

 ...

 provisioner “file” {

 ...

 }

 provisioner “remote-exec” {

 ...

 }

 provisioner “file” {

 ...

 }

 provisioner “file” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

 source = “${local.project_dir}/Dockerfile”

 destination = “/var/www/Dockerfile”

 }

 provisioner “file” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

 source = “${local.project_dir}/entrypoint.sh”

 destination = “/var/www/entrypoint.sh”

 }

 provisioner “file” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

Chapter 4: Terraform - Copy Directories to Instances

 | 41

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 source = “${local.project_dir}/requirements.txt”

 destination = “/var/www/requirements.txt”

 }

}

The Biggest Terraform Flaw (in my opinion)
Terraform is great at provisioning the resources you need and configuring their initial state (i.e. we added a
bunch of files, executed a few scripts, and installed required packages).

This is great, but it leaves a little something to be desired: instance configuration.

What I mean by this is if our web application code changes and the configuration requirements for any given vir-
tual machine instance change, it would be great if terraform apply could handle those changes... but it doesn’t.
This, to me, is one of Terraform’s biggest flaws but it can be solved very simply: Ansible. In the Ansible Chapter
I’ll show you exactly how to make Terraform & Ansible work together. In the meantime, we’ll use Terraform to
continue to handle the configuration of our resources.

This is also why I believe the Terraform docs mention that Provisioners are a Last Resort.

Docker & Terraform
In this section, we’re going to build a Docker container and run it - all with Terraform. Before we do, I want to
mention that it would be better practice to use a Docker Container Registry of some kind and use a CI/CD tool to
build our container images. I am not doing this so I can keep this project self-contained and limit the complexity
that can go into a project like this.

The reason we use Docker in the first place is so that we can deploy nearly any Docker container which means
we can deploy nearly any web application on any tech stack (such as Python, JavaScript/Node, Ruby, Nginx, etc)
with few exceptions.

Let’s update main.tf to build and run our container image. For more details on how this works check out Appen-
dix H.

resource “linode_instance” “cfe-pyapp” {

 ...

Chapter 4: Terraform - Copy Directories to Instancecs / The Biggest Terraform Flaw / Docker & Terraform

http://./05-ansible
https://www.terraform.io/docs/language/resources/provisioners/syntax.html

 | 42

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 provisioner “file” {

 ...

 }

 provisioner “remote-exec” {

 ...

 }

 provisioner “file” {

 ...

 }

 provisioner “file” {

 ...

 }

 provisioner “file” {

 ...

 }

 provisioner “file” {

 ...

 }

 provisioner “remote-exec” {

 connection {

 host = “${self.ip_address}”

 type = “ssh”

 user = “root”

 password = “${var.root_user_pw}”

 }

 inline = [

 “cd /var/www/”,

 “docker build -f Dockerfile -t pyapp-via-git . “,

 “docker run --restart always -p 80:8001 -e PORT=8001 -d pyapp-via-git”

]

 }

}

Adding this final remote-exec provisioner will add a significant amount of time since we have a docker build
command within, but it should work. If you’re having trouble with this step, you should omit it and attempt it
manually first. That is what I did, and I recommend you do the same.

Chapter 4: Terraform - Docker & Terraform

 | 43

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform Apply
Let’s first destroy all previously created resources with:

terraform apply -destroy -auto-approve

This will automatically take down everything we have done up until this point (assuming you run the command
in the devops/tf directory).

Now, let’s run;

terraform apply -auto-approve

You should see something like:

Plan: 1 to add, 0 to change, 0 to destroy.

Changes to Outputs:

 + webapp_hosts = [

 + (known after apply),

]

linode_instance.cfe-pyapp[0]: Creating...

Then you should see:

linode_instance.cfe-pyapp[0]: Creating...

linode_instance.cfe-pyapp[0]: Still creating... [10s elapsed]

linode_instance.cfe-pyapp[0]: Still creating... [20s elapsed]

linode_instance.cfe-pyapp[0]: Still creating... [30s elapsed]

linode_instance.cfe-pyapp[0]: Still creating... [40s elapsed]

linode_instance.cfe-pyapp[0]: Provisioning with ‘file’...

linode_instance.cfe-pyapp[0]: Still creating... [50s elapsed]

Chapter 4: Terraform - Docker & Terraform

 | 44

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

You’ll also see things like:

linode_instance.cfe-pyapp[0] (remote-exec): + sh -c curl -fsSL “https://download.docker.

com/linux/ubuntu/gpg” | gpg --dearmor --yes -o /usr/share/keyrings/docker-archive-keyring.

gpg

linode_instance.cfe-pyapp[0] (remote-exec): + sh -c echo “deb [arch=amd64 signed-by=/usr/

share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu focal

stable” > /etc/apt/sources.list.d/docker.list

linode_instance.cfe-pyapp[0] (remote-exec): + sh -c apt-get update -qq >/dev/null

linode_instance.cfe-pyapp[0] (remote-exec): + sh -c DEBIAN_FRONTEND=noninteractive apt-get

install -y -qq --no-install-recommends docker-ce-cli docker-scan-plugin docker-ce >/dev/

null

Which shows the installation process for our Terraform instance provisioners. All part of the normal process.
The whole process should take 5 to 10 minutes. After it’s done, you should have a newly created Linode instance
running a Docker-based python web application.

After it’s all said and done, we should see:

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

Outputs:

webapp_first_host = “pyapp-1 : 173.255.226.85”

webapp_hosts = [

 “pyapp-1 : 173.255.226.85”,

]

Naturally, pyapp-1 will have a different IP address for you.

Open your browser and navigate to your IP address listed in pyapp-1 . Mine results in:

Congratulations! You have successfully deployed a Docker-based Python web application using Terraform and
Linode! Ready for some more?

Chapter 4: Terraform - Docker & Terraform

 | 45

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Adding Instances
Adding instances could not be easier. We just up our instance count in main.tf from

resource “linode_instance” “cfe-pyapp” {

 count = “1”

 ...

}

to

resource “linode_instance” “cfe-pyapp” {

 count = “5”

 ...

}

I put count = “5” to illustrate an example. You can put however many you would like. After you update count, go
ahead and run:

terraform apply -auto-approve

After you do, you should see:

Changes to Outputs:

 ~ webapp_hosts = [

 “pyapp-1 : 173.255.226.85”,

 + (known after apply),

 + (known after apply),

 + (known after apply),

 + (known after apply),

]

linode_instance.cfe-pyapp[3]: Creating...

How amazing is this? No matter how many times you change the count, Terraform will easily be able to provision
instances for you. Each instance is provisioned asynchronously to save time and speed up deployment but, there
are at least two things to consider to improve build/deployment speed:

	● External Docker Container Builder & Registry
	● Create a reusable image in Linode (much like how we are using the pre-built image

”linode/ubuntu20.04”) that only needs to be spun up.

Chapter 4: Terraform - Adding Instances

 | 46

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

When it’s done, you should have the following (or something like it):

Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

Outputs:

webapp_first_host = “pyapp-1 : 173.255.226.85”

webapp_hosts = [

 “pyapp-1 : 173.255.226.85”,

 “pyapp-2 : 172.104.211.236”,

 “pyapp-3 : 97.107.128.102”,

 “pyapp-4 : 97.107.129.113”,

 “pyapp-5 : 173.255.236.216”,

]

To handle five instances, we’ll implement a Node Balancer in a future step.

Should Instance Count be in .tfvars?
Before we answer this question, let’s see how we would update files for instance to count as a variable.

First, we’d update terraform.tfvars :

...

py_app_count=3

Then we’d update variables.tf perhaps even with a default value:

...

variable “py_app_count” {

 default = 1

}

And now finally update main.tf with:

resource “linode_instance” “cfe-pyapp” {

 count = “${var.py_app_count}”

 ...

}

Chapter 4: Terraform - Adding Instances

 | 47

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

After we make these changes, we can just run:

terraform plan

It should be worth mentioning that you can save the output of terraform plan and then run terraform apply on
that saved output. We’ll save doing so for another time.

Let’s see if our expectation matches what we changed. In my case, I see:

Plan: 0 to add, 0 to change, 2 to destroy.

Changes to Outputs:

 ~ webapp_hosts = [

 # (2 unchanged elements hidden)

 “pyapp-3 : 97.107.128.102”,

 - “pyapp-4 : 97.107.129.113”,

 - “pyapp-5 : 173.255.236.216”,

]

Because I went from a count of five to three.

Now we can apply this plan:

terraform apply -auto-approve

After a short duration I should see:

Apply complete! Resources: 0 added, 0 changed, 2 destroyed.

Outputs:

webapp_first_host = “pyapp-1 : 173.255.226.85”

webapp_hosts = [

 “pyapp-1 : 173.255.226.85”,

 “pyapp-2 : 172.104.211.236”,

 “pyapp-3 : 97.107.128.102”,

]

Chapter 4: Terraform - Adding Instances

 | 48

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

It’s probably not surprising that deleting resources is significantly faster than provisioning them, especially in our
case.

Provision Node Balancers with Terraform
Since we added three new instances in the last step, we’ll now add a load balancing service by Linode called a
Node Balancer.

First, add the linode_nodebalancer resource.

resource “linode_nodebalancer” “pycfe_nb” {

 label = “pycfe-nodebalancer”

 region = “us-east”

 client_conn_throttle = 20

 depends_on = [

 linode_instance.cfe-pyapp

]

}

Before we go any further, note that the region is the same for the linode_nodebalancer and the
linode_instance resource we set above; the region must be the same. Do you think it would be a good idea to
turn this region into a reusable variable? Try it now.

Now that we have the linode_nodebalancer resource, we need to add the default configuration for this node
balancer with:

resource “linode_nodebalancer_config” “pycfe_nb_config” {

 nodebalancer_id = linode_nodebalancer.pycfe_nb.id

 port = 80

 protocol = “http”

 check = “http”

 check_path = “/”

 check_interval = 35

 check_attempts = 15

 check_timeout = 30

 stickiness = “http_cookie”

 algorithm = “source”

}

Chapter 4: Terraform - Adding Instances / Provision Node Balancers with Terraform

https://cloud.linode.com/nodebalancers

 | 49

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s break this down:
	● nodebalancer_id this references the linode_nodebalancer resource we defined above.
	● port = 80 PORT 80 is the standard port for HTTP access (standard web traffic).
	● protocol - the options are HTTP , HTTPS and TCP . If you set HTTPS you must include TLS/SSL certifi-

cates (which is outside the scope of this chapter).
	● check , check_interval , check_attempts , and check_timeout are all active health checks of this node_

balancer service.
	● check_path is the path health checks will occur.
	● stickiness I choose http_cookie for web applications (read more on Linode’s docs here.
	● algorithm you have three options for this attribute on how your node balancer will route traffic:

	◦ roundrobin : this will rotate connections between nodes one by one.
	◦ leastconn : this assigns connections to the backend with the least connections.
	◦ source : this uses the client’s IPv4 address.

Now, our node balancer needs to be configured for the actual instance(s) it will use. Before we can configure it,
we need to ensure that our linode_instance (s) have a private IP address.

Let’s revisit our linode_instance configuration:

resource “linode_instance” “cfe-pyapp” {

 count = “${var.py_app_count}”

 image = “linode/ubuntu20.04”

 label = “pyapp-${count.index + 1}”

 group = “CFE-Learner”

 region = “us-east”

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

 root_pass = var.root_user_pw

 tags = [“python”, “cfe”]

}

Now just add private_ip = true as a new argument:

resource “linode_instance” “cfe-pyapp” {

 ...

 private_ip = true

 ...

}

Now run terraform apply before continuing any further. I had to run terraform destroy to start fresh with these
nodes.

Chapter 4: Terraform - Provision Node Balancers with Terraform

https://www.linode.com/docs/guides/configuring-load-balancer-sticky-session/
https://cloud.linode.com/nodebalancers

 | 50

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

If our linode_instance (s) are missing private_ip = true we will be unable to attach them to a node_balancer .
private_ip is set to false by default.

Now, let’s add our linode_nodebalancer node configuration to main.tf :

resource “linode_nodebalancer_node” “pycfe_nb_node” {

 count = var.py_app_count

 nodebalancer_id = linode_nodebalancer.pycfe_nb.id

 config_id = linode_nodebalancer_config.pycfe_nb_config.id

 label = “pycfe_node_pyapp_${count.index + 1}”

 address = “${element(linode_instance.cfe-pyapp.*.private_ip_address, count.index)}:80”

 weight = 50

 mode = “accept”

}

Before we go line by line, we’ll look at the address argument.

Start with 1 linode_instance and assume it has the following attributes:
	● Terraform resource name is cfe-pyapp
	● Resource label is pyapp-1
	● private_id_address is available and set to 192.168.156.59
	● Running application exposed at PORT 80

A hardcoded look at this instance’s linode_nodebalancer_node address argument would be:

address = “192.168.156.59:80”

This helps us understand how ${element() } works. ${element()} is a simple way to combine Terraform resource
information at run time at a specific index value.
Take a closer look at ${element(linode_instance.cfe-pyapp.*.private_ip_address, count.index)}

	● linode_instance.cfe-pyapp.*.private_ip_address does the following:
	◦ linode_instance : references this resource value
	◦ cfe-pyapp : references the resource with this name
	◦ * is a wildcard value; we want to replace this with an index value
	◦ private_ip_address is now available from this resource because of private_ip = true being set before

	● count.index : since we have count = var.py_app_count terraform will automatically iterate over this re-
source configuration and count.index will be set at runtime.

	● element will replace the wildcard value * with the count.index value.

After the configuration is complete, you can run terraform plan to see exactly how this renders out.

Chapter 4: Terraform - Provision Node Balancers with Terraform

 | 51

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now, we break down the other arguments to linode_nodebalancer_node:
	● count -- this is the number of instances you’d like to make as nodes. In my case, I am matching the num-

ber of linode_instance count with the linode_nodebalancer_node count by using the variable we added
in previous steps.

	● nodebalancer_id - this configuration references the linode_nodebalancer resource we defined above
and used in linode_nodebalancer_config as well.

	● config_id is a reference to the linode_nodebalancer_config we created before.
	● label - this is how we label this node. It’s recommended to use ${count.index} as a part of this label to

ensure each label is unique. Just like with the linode_instance , ${count.index} is only available when you
declare the count argument (like we did with count = var.py_app_count .

	● weight = 50 Nodes with a higher weight will receive more traffic; values are between 1-255.
	● mode = “accept” this means the node can accept connections. Other options include reject , drain , and

backup .

Using Templates with Terraform
Terraform has a straightforward way of using templates. It’s as simple as:

templatefile(“path/to/template.tpl”, { context=”value” })

The templatefile function takes in a path to the .tpl file along with a context dictionary (key/value pairs).

Here’s a look at a simple template replacement:

templates/sample-template.tpl

Hello ${name},

Here are the items you ordered:

%{ for item in items ~}

- ${item}

%{ endfor ~}

And the template function:

templatefile(“templates/sample-template.tpl”, { name = “Justin”, items=[“Camera”, “Smart-

phone”, “Coffee”] })

Chapter 4: Terraform - Provision Node Balancers with Terraform / Using Templates with Terraform

 | 52

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The template renders the following:

<<EOT

Hello Justin,

Here are the items you ordered:

- Camera

- Smartphone

- Coffee

EOT

You can try this command out with:

terraform console

Just make sure that you store your sample template in a template directory named templates and a template
file name as sample-template.tpl .

We should be able to update our command (because of locals.tf) to:

templatefile(“${local.templates_dir}/sample-template.tpl”, { name = “Justin”, items=[

“Camera”, “Smartphone”, “Coffee”] })

Terraform Console
If you set up your project correctly, running terraform console brings up an interactive console where you can
practice all of the commands rendered by functions like templatefile . You can also run loops like [for host in
linode_instance.cfe-pyapp.*: “${host.label} : ${host.ip_address}”]

Just navigate to the root of your Terraform project and run:

terraform console

This will give you access to your local Terraform project where you can run:

[for host in linode_instance.cfe-pyapp.*: “${host.label} : ${host.ip_address}”]

Chapter 4: Terraform - Using Templates with Terraform

 | 53

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

or

[for host in linode_instance.cfe-pyapp.*: “${host.ip_address}”]

And other versatile commands.

Create a local_file resource using Templates
In this example, we create an Ansible inventory file. Terraform is about provisioning resources, Ansible config-
ures them going forward (this includes accounting for various state changes that may occur). More on Ansible in
the Ansible Chapter.
First, we design the template. We’ll put it in the same location as local.templates_dir from locals.tf so:

templates/ansible-inventory.tpl

%{ for host in hosts ~}

${host}

%{ endfor ~}

Now that we have this template file let’s implement a local_file resource in main.tf

resource “local_file” “ansible_inventory” {

 content = templatefile(“${local.templates_dir}/ansible-inventory.tpl”, { hosts=[for

host in linode_instance.cfe-pyapp.*: “${host.ip_address}”] })

 filename = “${local.devops_dir}/ansible/inventory.ini”

}

Enter the terraform console and test the new templatefile argument we created for this new file. If you haven’t
fully configured your file, you should see an error.

When we run terraform plan we should now see:

╷

│ Error: Could not load plugin

│

│

│ Plugin reinitialization required. Please run “terraform init”.

...

Chapter 4: Terraform - Using Templates with Terraform

http://./05-ansible
http://./05-ansible

 | 54

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

We’re seeing this because we added a new resource that we haven’t used yet: local_file . You’ll see this every
time you use a resource for the first time.

Re-initialize the project with your backend using:

terraform init -backend-config=backend

Run terraform plan and you should see:

Terraform will perform the following actions:

 # local_file.ansible_inventory will be created

 + resource “local_file” “ansible_inventory” {

 + content = <<-EOT

 173.255.226.85

 45.33.64.242

 45.79.128.237

 EOT

 + directory_permission = “0777”

 + file_permission = “0777”

 + filename = “/Users/myuser/Dev/myproject/devops/ansible/inventory.ini”

 + id = (known after apply)

 }

Plan: 1 to add, 0 to change, 0 to destroy.

The content section should match what you tested in terraform console above and the filename will be an
absolute path on your local system.

Now run terraform apply.

Once you do this, it will create the file for you in devops/ansible/inventory.ini . Using your machine delete
devops/ansible/inventory.ini manually. Run terraform apply again. Now, add some random data within the
devops/ansible/inventory.ini file. Run terraform apply again.

Another huge advantage of using Terraform is that it ensures the state of your resource(s) matches what you
declare in your Terraform project, including local files.

If you need to change the devops/ansible/inventory.ini update templates/ansible-inventory.tpl and/or the
resource “local_file” “ansible_inventory” configuration.

Chapter 4: Terraform - Using Templates with Terraform

 | 55

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Using templates removes any ambiguity that arises from creating local files with Terraform.

In the Ansible section, you’ll learn more about how to use this inventory file.

Terraform & GitHub Actions
After getting some practice with Terraform, you should try implementing the workflow automation tool GitHub
Actions.

“GitHub Actions makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test,
and deploy your code right from GitHub.”

So how do we use Terraform with GitHub Actions?

These instructions assume that your project is already available on GitHub and that you are using the Terraform
gitignore . Learning how to use Git is outside the context of this book.

Step 1: Backend & Repo Secrets
To use GitHub Actions, we must have a cloud-based Terraform backend setup (possibly through Linode Object
Storage) or the state of our Terraform project will be unusable.

Remember the following files should never be checked into Git or publicly exposed:
	● .tfstate
	● backend
	● terraform.tfvars

Here’s what our backend file contains:

skip_credentials_validation = true

skip_region_validation = true

bucket = ”your-bucket”

key = ”try-iac-book.tfstate”

region = ”us-southeast-1”

endpoint = ”us-southeast-1.linodeobjects.com”

access_key = ”your-key”

secret_key = ”your-secret”

The configuration values to keep hidden are:
	● bucket
	● key
	● access_key
	● secret_key

Chapter 4: Terraform - Using Templates with Terraform / Terraform & GitHub Actions

http://./05-ansible
https://github.com/features/actions
https://github.com/features/actions
https://github.com/github/gitignore/blob/main/Terraform.gitignore
https://git-scm.com/

 | 56

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Add these to your repo’s secrets:
	● Navigate to your repo on GitHub
	● Click on Settings (your URL should look similar to https://github.com/codingforentrepreneurs/iac-terra-

form/settings)
	● Click on Secrets
	● For each configuration value , click New repository secret and store them like:

	◦ TERRAFORM_BUCKET_NAME (for bucket)
	◦ TERRAFORM_STATE_KEY (for key)
	◦ LINODE_OBJECT_STORAGE_ACCESS_KEY (for access_key)
	◦ LINODE_OBJECT_STORAGE_SECRET_KEY (for secret_key)

Step 2: `terraform.tfvars` & Repo Secrets
Just like backend we’re going to add the values from terraform.tfvars to your repo secrets.

Here’s our terraform.tfvars

linode_pat_token = ”your_personal_access_otken”

authorized_key = ”your_ssh_pub_key”

root_user_pw = ”your_default_root_user_pw”

py_app_count = 3

We’ll put each one of these values into our GitHub repo secrets as:

	● LINODE_PA_TOKEN (for linode_pat_token)
	● SSH_PUB_KEY (for authorized_key)
	● ROOT_USER_PW (for root_user_pw)
	● PYAPP_NODE_COUNT (for py_app_count)

Step 3: Your Terraform Workflow
At this point, we should have the following values stored in our GitHub repo secrets:

	● TERRAFORM_BUCKET_NAME
	● TERRAFORM_STATE_KEY
	● LINODE_OBJECT_STORAGE_ACCESS_KEY
	● LINODE_OBJECT_STORAGE_SECRET_KEY
	● LINODE_PA_TOKEN
	● SSH_PUB_KEY
	● ROOT_USER_PW
	● PYAPP_NODE_COUNT

To use these secrets, we’ll do ${{ secrets.TERRAFORM_BUCKET_NAME }} in our workflow file(s) as you’ll see
below.

Chapter 4: Terraform - Terraform & GitHub Actions

https://github.com/

 | 57

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Start by creating the necessary GitHub Actions folders at the root of your project:

mkdir -p .github

mkdir -p .github/workflows/

Now, create your workflow file:

.github/workflows/apply-terraform.yaml

name: Apply Infrastructure via Terraform

on:

 workflow_dispatch:

 push:

 branches: [main]

jobs:

 terraform:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v2

 - name: Setup Terraform

 uses: hashicorp/setup-terraform@v1

 with:

 terraform_version: 1.1.4

 - name: Add Terraform Backend for S3

 run: |

 cat << EOF > devops/tf/backend

 skip_credentials_validation = true

 skip_region_validation = true

 bucket = ”${{ secrets.TERRAFORM_BUCKET_NAME }}”

 key = ”${{ secrets.TERRAFORM_STATE_KEY }}”

 region = ”us-southeast-1”

 endpoint = ”us-southeast-1.linodeobjects.com”

 access_key = ”${{ secrets.LINODE_OBJECT_STORAGE_ACCESS_KEY }}”

 secret_key = ”${{ secrets.LINODE_OBJECT_STORAGE_SECRET_KEY }}”

 EOF

 - name: Add Terraform TFVars

 run: |

Chapter 4: Terraform - Terraform & GitHub Actions

 | 58

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 cat << EOF > devops/tf/terraform.tfvars

 linode_pa_token = ”${{ secrets.LINODE_PA_TOKEN }}”

 authorized_key = ”${{ secrets.SSH_PUB_KEY }}”

 root_user_pw = ”${{ secrets.ROOT_USER_PW }}”

 py_app_count = ${{ secrets.PYAPP_NODE_COUNT }}”

 EOF

 - name: Terraform Init

 run: terraform -chdir=./devops/tf init -backend-config=backend

 - name: Terraform Validate

 run: terraform -chdir=./devops/tf validate -no-color

 - name: Terraform Apply Changes

 run: terraform -chdir=./devops/tf apply -auto-approve

Let’s break this down:
	● name is the name of the workflow, make it unique or it can get confusing.
	● on when do we want this workflow to run?
	● workflow_dispatch allows us to trigger this workflow manually on GitHub as well as call this workflow via

the GitHub API.
	● push with branches: [main] means that this workflow will run automatically every time we push this

code onto the main branch.
	● jobs is the declaration for the job(s) we want to run.
	● jobs:terraform: The first and only job is named terraform but it could be named anything you like.
	● runs-on: ubuntu-latest is the docker container image type this workflow runs on. ubuntu-latest is the

most common.
	● steps contains each command (or step) we want to run in the order we want to run them.
	● name: Checkout and uses: actions/checkout@v2 gets the code for us.
	● name: Setup Terraform , uses: hashicorp/setup-terraform@v1 and with: terraform_version: 1.1.4 will

install the Terraform CLI to our workflow.
	● name: Add Terraform Backend for S3 and run: | this step allows us to create our backend file based on

the store secrets. Doing this will automatically hide the backend values.
	● name: Add Terraform TFVars and run: | will create our terraform.tfvar file just as the backend file.
	● Finally, we run terraform validate and terraform apply to automatically apply all changes. terraform

validate is run before terraform apply to ensure the Terraform files are valid before making changes. If
they are invalid, the workflow will fail.

That’s it. Once you push this file to GitHub, the workflow will automatically run.

Pretty neat, right? Remove the lines that contain push:branches:[main] if you want to run this workflow
manually.

Chapter 4: Terraform - Terraform & GitHub Actions

 | 59

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Challenge
Create a workflow that handles terraform -chdir=./devops/tf apply -destroy -auto-approve
so you can remove this configuration as needed.

Clean Up
As mentioned we we learned about terraform destroy , I recommend that you destroy any provisioned re-
source(s) unless you intend to use them:

terraform apply -destroy -auto-approve

or

terraform -chdir=./devops/tf apply -destroy -auto-approve

This is a good habit to get into. You also may consider rolling (or deleting) your Linode Personal Access (LIN-
ODE_PA_TOKEN) token and your Linode Object Storage Secret Key (LINODE_OBJECT_STORAGE_SECRET_KEY
) so you don’t accidentally provision resource(s) you didn’t intend to.

Chapter 4: Terraform - Clean Up

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 | 61

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 5

Ansible
Ansible has many built-in features; we’ll focus primarily on Ansible Playbooks. Ansible Playbooks “record and ex-
ecute Ansible’s configuration, deployment, and orchestration functions” which essentially means we tell Ansible
what we want it to achieve, and Ansible does it. For example:

Us: Hey Ansible, please install NGINX
Ansible: No problem

Us: Hey Ansible, on these 3 servers install NGINX. Also, on this 1 server install Apache.
Ansible: Done. All machines have been updated.

Us: Hey Ansible, on all 4 servers, please install Docker. Purge NGINX and Apache from all systems.
Ansible: Done.

This scenario is common for tools like Ansible because that’s what they are designed for. How we instruct Ansible
to run is not conversational like above (maybe someday), it’s in a structured format using YAML files. If you’re
not familiar with YAML , you’ll get a lot more familiar with it as you use tools like Ansible.

Here’s a basic example of an Ansible Playbook file in YAML (we’ll implement this one exactly in a few sections):

hosts: all

become: yes

tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

For those of you who are familiar with installing NGINX on Debian machines, you may know of the command:

sudo apt update && sudo apt install nginx -y

Both of these examples aim to achieve the same result: install NGINX.

But why do we need Ansible if we can just write a bunch of installation commands?

Chapter 5: Ansible

 | 62

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The answer boils down to 4 aspects of Ansible (as well as many other IaC tools): DRY, Repeatable, Reversible, &
Version Control

1. DRY: Don’t Repeat Yourself
A core tenet of software development is to not repeat yourself. Using Ansible correctly unlocks DRY across your
deployment.

2. Repeatable
We’re focusing on Ansible Playbooks, which are a bunch of YAML files. Assuming Ansible is installed, these YAML
files can run anywhere anytime.

The result of running it is also repeatable. That means running a playbook on 10,000 servers is as easy as running
it on 1. Naturally provisioning 10,000 servers will take longer than provisioning 1, but using playbooks is easier
than manually provisioning servers or writing custom scripts to provision them (Ansible can also run custom
scripts for us).

3. Reversible
If you configure everything through Ansible (or other IaC tools) reversing changes becomes significantly easier
simply because the changes are well documented. I tend to think of Ansible as code-based documentation that
configures what you need.

4. Version Control
Version control tracks the history of changes for every file within a project that uses version control correctly. Git,
the type of version control we recommend, is one of the best ways for all your team members to collaborate on
vital code and configuration your team needs. Having version control means we can leverage additional automa-
tion tools that make Ansible run only after meeting certain conditions, this limits who can make major changes.

I could write books about the importance of these 4 points and the thousands of other points I did not address.

I recommend trying tools to see if they make a good fit for your workflow, so let’s get started with Ansible.

Getting Started & Core Installations
This chapter requires a few core technologies before we get started. If you have any issues installing these items
on your local machine, I highly recommend creating a remote workspace as we do in Appendix C.

Python
To run Ansible and Ansible Playbooks, we need to install Python version 3 (ideally 3.7 or greater). For most sys-
tems, installing it directly from python.org/downloads is the easiest way to get started.

Virtual Environments (venv)
To provide some isolation between Python projects, we use virtual environments (venv). We’ll use the built-in
module venv. If you’re familiar with another virtual environment manager, feel free to use it. Here are a few oth-
ers worth considering

Chapter 5: Ansible - Getting Started & Core Installations

https://www.python.org/downloads/
https://docs.python.org/3/library/venv.html

 | 63

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● Poetry
	● Pipenv
	● Virtualenv

I use the built-in venv because I believe it’s the easiest way for most of us to get started, and it’s also been
around the longest. I’ll show you how to create one of these later in this chapter.

Git
Git is an open-source version control tool. Using Git is recommended for all your code projects. We’ll be using Git
to copy example code in this case.

Download Git for your system.

VS Code
Visual Studio Code, or VS Code, is one of the most widely used tools for writing code because it’s free, is based on
open-source, has a plugin marketplace, and Microsoft develops it.

Download it here.

Alternatives:
	● Atom
	● Sublime Text
	● PyCharm

Clone the Sample Python Web App
We’re starting with a Python web application (like we do for the other IaC tools in the Try IaC series) as a way
to deploy a functioning web application into production. This gives us a practical look at how tools like Ansible
work.

In this case, we’ll be deploying a Docker-based Python web application. Using Docker makes this even more
practical because once you know how to deploy an app with Docker, you can deploy nearly any type of open-
source application. Now, this book is not about Docker and all its amazing features but it does leverage some of
them as a means for the most practical way to bring an app, any app, into production.

cd /path/to/your/project/folder/

I used cd ~/dev/iac-ansible
We need to clone the following project:

git clone https://github.com/codingforentrepreneurs/iac-python .

Chapter 5: Ansible - Getting Started & Core Installations / Clone the Sample Python Web App

https://python-poetry.org/
https://pipenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://git-scm.com/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://github.com/codingforentrepreneurs/iac-python

 | 64

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Remove the cloned .git repo:

rm -rf .git

Re-initialize this project as your git project:

git init

git add --all

git commit -m “Initial Project”

Create a Python Virtual Environment & Install Ansible
With Python applications, it’s recommended that you create a virtual environment. We’re going to use Python’s
built-in Virtual Environment manager: venv

Using venv (recommended)

python3 -m venv .

Activate on macOS / Linux

source bin/activate

Activate on Windows

.\Scripts\activate

Install

(iac-ansible) $ python -m pip install -r requirements.txt

(iac-ansible) $ python -m pip install ansible

You can also run ./bin/python -m pip install -r requirements.txt

Chapter 5: Ansible - Clone the Sample Python Web App / Create Python Virtual Environment & Install Ansible

 | 65

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Using `pipenv`

pipenv install -r requirements.txt

pipenv install ansible

Using `virtualenv`
This is almost identical to Python’s built-in `venv` tool.

virtualenv .

Activate on macOS / Linux

source bin/activate

Activate on Windows

.\Scripts\activate

Install

(iac-ansible) $ python -m pip install -r requirements.txt

(iac-ansible) $ python -m pip install ansible

You can also run ./bin/python -m pip install -r requirements.txt

Using `poetry`

cat requirements.txt|xargs poetry add

poetry add ansible

Chapter 5: Ansible - Create Python Virtual Environment & Install Ansible

https://github.com/pypa/pipenv
https://virtualenv.pypa.io/en/latest/
https://python-poetry.org/

 | 66

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Inventory & Provision Instances on Linode
We’ll start by provisioning 1 Linode instance that Ansible will configure.

1. Login to Linode Console
2. Click Create > Linode and use the following

	● Image type: ubuntu 20.04
	● Region: (near you or your users)
	● Linode Plan: Shared CPU → Nanode 1GB (just $5/mo)
	● Linode Label: ansible-1 (or whatever you choose)
	● Add tags: (optional)
	● Root password: set a secure password (Consider using Appendix D).
	● �SSH keys: you must set an SSH key to your local machine and save it in the Linode Console. Use Appendix

A to do so.
	● Those are all the required options. Click Create Linode and let it provision.

3. Repeat these steps for future instances

Once you have provisioned your virtual machine, add the public IP Address to inventory.ini like:

192.168.86.41

As a side note, you can automate the provisioning instance(s) step by leveraging Terraform.

Now that you have an instance provisioned and Ansible installed locally, let’s create your first playbook.

Your First Playbook
Ansible Playbooks are the heart of what Ansible is all about. You write playbooks as a way to use Ansible to auto-
mate configuration, deployment, and orchestration.

devops/ansible/main.yaml

- hosts: all

 become: yes

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

Chapter 5: Ansible - Inventory & Provision Instances on Linode / Your First Playbook

https://cloud.linode.com
http://./04-terraform

 | 67

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now run this playbook with:

ansible-playbook main.yaml -i inventory.ini

Let’s break this down:
	● ansible-playbook is the command-line command to execute a playbook.
	● main.yaml is the playbook file we created above.
	● inventory.ini is the inventory file that includes our IP Address(es) from the previous step.

After you run this command, you should see something like:

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [192.168.86.41]

TASK [Install Nginx] ***

changed: [192.168.86.41]

PLAY RECAP ***

192.168.86.41 : ok=2 changed=1 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

This shows what Ansible did based on our playbook.

Keep in mind that if you have just provisioned your instance, Ansible may not be able to make changes yet. When
in doubt, SSH into your instance if Ansible responds with fatal: [192.168.86.41]: UNREACHABLE!

Chapter 5: Ansible - Your First Playbook

 | 68

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

If you open the IP address in your web browser, you should see:

Default Ansible Configuration - ansible.cfg
We want to always use our inventory.ini file . So let’s set up the default Ansible configuration that ansible-play-
book looks for. It’s a file called ansible.cfg:

devops/ansible/ansible.cfg

[defaults]

ansible_python_interpreter=”/usr/bin/python3”

deprecation_warnings=False

inventory=inventory.ini

remote_user=”root”

retries=2

Let’s break this down:
	● ansible_python_interpreter is the version of Python you want your hosts to use.
	● deprecation_warnings ignore deprecation warnings when using ansible
	● inventory this is the path to our local inventory file (from above)
	● remote_user What user do you want to use for ansible?
	● retries The number of times you want ansible to attempt to run a playbook.

When you run a playbook for the first time on a remote host (a virtual machine) you have never used SSH on, you
will likely see something to the effect The authenticity of host ‘96.126.104.175 (96.126.104.175) can’t be estab-
lished...Are you sure you want to continue connecting (yes/no/[fingerprint])? If you have just provisioned this IP
address, you will want to write yes and enter/return to continue. You can also add host_key_checking=False in
your ansible.cfg if you want to skip this step.

Chapter 5: Ansible - Your First Playbook / Default Ansible Configuration - ansible.cfg

 | 69

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now, we can just run ansible-playbook main.yaml , and we’ll see:

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [192.168.86.41]

TASK [Install Nginx] ***

ok: [192.168.86.41]

PLAY RECAP ***

192.168.86.41 : ok=2 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

Notice that the result gives us changed=0 . This means that Ansible did not need to change our instances simply
because the main.yaml playbook has already run correctly.

This simple example gives us insight into what Ansible does well: configuring systems when they need to be
changed and only when they need to be changed.

Let’s expand on this some more.

Replace Remote Files with Ansible
devops/ansible/main.yaml

- hosts: all

 become: yes

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

Chapter 5: Ansible - Default Ansible Configuration - ansible.cfg / Replace Remote Files with Ansible

 | 70

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 - name: Update Nginx Default Homepage

 copy:

 dest: /var/www/html/index.nginx-debian.html

 content: |

 <h1>Hello World</h1>

 <p>This is awesome</p>

Let’s examine what has changed:

 - name: Update Nginx Default Homepage

 copy:

 dest: /var/www/html/index.nginx-debian.html

 content: |

 <h1>Hello World</h1>

 <p>This is awesome</p>

This creates a file on your instance(s) at the location written in dest with the text in content. We’re going to
make this better soon, but let’s see the result now.

Now run

ansible-playbook main.yaml

After adding this new task, we see:

TASK [Update Nginx Default Homepage] ***

changed: [96.126.104.175]

PLAY RECAP ***

96.126.104.175 : ok=3 changed=1 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

What we see here is the built-in plugin copy , but this case has a fundamental issue: writing inline code.

We solve this by using templates.

Chapter 5: Ansible - Replace Remote Files with Ansible

 | 71

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Using Templates with Playbooks
Now that we’ve seen two built-in plugins to Ansible Playbooks - apt and copy - it’s time to examine how to use
external files with any given task and/or plugin.

We do this by using templates. Templates in Ansible are written in Jinja, which is essentially string substitution
taken to a whole new level. We’ll discuss these templates more later. For now, let’s start with a standard HTML
page:

devops/ansible/templates/nginx.default.html

<!DOCTYPE html>

<html>

 <body>

 <h1>Hello World</h1>

 <p>This is awesome</p>

 </body>

</html>

What we see here is just a standard HTML file, but we can choose any file type. Since we’re using this file to
change the default NGINX page, we need to use HTML.

Let’s update our playbook to reflect this newly created template:

devops/ansible/main.yaml

hosts: all

become: yes

tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

 - name: Update Nginx Default Homepage

 copy:

 dest: /var/www/html/index.nginx-debian.html

 src: ./templates/nginx.default.html

Notice that content has become src in the copy built-in. src is merely the source path local to this Ansible
Playbook.

Chapter 5: Ansible - Using Templates with Playbooks

https://jinja.palletsprojects.com/en/3.0.x/

 | 72

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Run ansible-playbook main.yaml to verify your changes were successful.

Templates are even more useful when we sprinkle in variables so that our templates can change whenever our
inventory/hosts need them to. Let’s see how we can use variables in templates.

Using Variables in Templates
Before we jump into variables, I want you to consider the following Python string:

print(“Hello world, {name} is a great tool.”.format(name=”Ansible”))

The result of this command is:

Hello world, Ansible is a great tool.

Above is a simple string substitution example (a somewhat outdated example).

Below is what made this substitution work:

- `{name}`

- `.format(name=”Ansible”)`

In this case, the name is the key, and Ansible is the value of that key. Wherever the key shows up, it will be
replaced automatically. This concept is simple in terms of programming and it’s certainly not unique to Python.

I showed you the above example to illustrate how Jinja works. Here’s a basic Jinja example:

In the template:

Hello {{ my_variable }}

In the playbook:

vars:

 my_variable: Whatever I choose

Chapter 5: Ansible - Using Templates with Playbooks / Using Variables in Templates

 | 73

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The result:

Hello Whatever I choose.

Jinja does get more complex than this (allowing for loops and conditions). For now, we’ll take a look at a practi-
cal example with this data:

devops/ansible/main.yaml

- hosts: all

 become: yes

 vars:

 title: Hello there

 description: Some more news!

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

 - name: Update Nginx Default Homepage

 copy:

 dest: /var/www/html/index.nginx-debian.html

 src: ./templates/nginx.default.html

Let’s break down what we added. The vars parameter is what we set to use custom inline variables in our play-
book. Within the vars block, we add key/value pairs such as title (the key) and Hello there the value of title (same
is true for description).

Now let’s update our template:

templates/nginx.default.html

html

<!DOCTYPE html>

<html>

Chapter 5: Ansible - Using Variables in Templates

 | 74

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 <body>

 <h1>{{ title }} - {{ inventory_hostname }}</h1>

 <p>{{ description }}</p>

 </body>

</html>

But where did {{ inventory_hostname }} come from? Before we answer that run:

ansible-playbook main.yaml

Open up your IP Address and take a look at the result. inventory_hostname was set! How did {{ inventory_host-
name }} work despite being absent in the vars declaration in our playbook? That’s because it’s called a special
variable and is built right into Ansible. Pretty neat huh?

Configure Multiple Hosts
Now it’s time to provision 3 more instances on Linode. As a refresh you’ll need to:

1. Login to Linode Console
2. Click Create > Linode and use the following

	● Image type: ubuntu 20.04
	● Region: (near you or your users)
	● Linode Plan: Shared CPU → Nanode 1GB (just $5/mo)
	● Linode Label: ansible-1 (or whatever you choose)
	● Add tags: (optional)
	● Root Password: set a secure password. (Consider using Appendix D)
	● �SSH Keys: you must set an ssh key to your local machine and save it in the Linode Console. Use Appendix A

to do so.
	● That’s all the required options. Click Create Linode and let it provision”
	● Update inventory.ini with your new IP address (like below)

3. Repeat these steps for each new instance

Update inventory.ini:

45.33.115.4

96.126.118.76

198.58.105.179

23.239.25.5

Chapter 5: Ansible - Using Variables in Templates / Configure Multiple Hosts

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://cloud.linode.com

 | 75

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now that you have 4 instances, let’s use Ansible to configure them:

ansible-playbook main.yaml

Here’s my result:

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [66.175.209.101]

ok: [96.126.104.175]

ok: [45.33.64.242]

ok: [23.239.11.23]

TASK [Install Nginx] ***

ok: [96.126.104.175]

changed: [66.175.209.101]

changed: [45.33.64.242]

changed: [23.239.11.23]

TASK [Update Nginx Default Homepage] ***

ok: [96.126.104.175]

changed: [66.175.209.101]

changed: [45.33.64.242]

changed: [23.239.11.23]

PLAY RECAP ***

23.239.11.23 : ok=3 changed=2 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

45.33.64.242 : ok=3 changed=2 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

66.175.209.101 : ok=3 changed=2 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

96.126.104.175 : ok=3 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

Chapter 5: Ansible - Configure Multiple Hosts

 | 76

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

As we see, it shows that the 3 new instances have changes while our previous one stays the same. From here
on out I am not going to show these results but I did want to highlight how simple it is to review exactly what
occurred doing any given playbook action.

Inventory Groups & Load Balancing
Now let’s see how simple it is to implement load balancing with Ansible and NGINX. As you may know, load bal-
ancing allow us to handle more traffic by adding more machines with minimal specs (horizontal scaling) instead
of bumping up the specs of each machine (vertical scaling).

To create inventory groups in ansible we just proceed the IP address or addresses with the [mygroup] designa-
tion. mygroup can be any name you decide.

Here’s an example:

Update inventory.ini :

[loadbalancer]

23.239.25.5

[webapps]

45.33.115.4

96.126.118.76

198.58.105.179

We now have two groups webapps and loadbalancer . We can target these groups within our playbooks by
using hosts: webapps and hosts: loadbalancer repsecitvely. Up until this point we’ve used hosts: all which
automatically targets every host listed in inventory.ini .

Before we update our playbook, let’s add the load balancer NGINX configuration template:

devops/ansible/templates/nginx.conf

upstream myproxy {

 {% for host in groups[‘webapps’] %}

 server {{ host }};

 {% endfor %}

}

Chapter 5: Ansible - Configure Multiple Hosts / Inventory Groups & Load Balancing

 | 77

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

server {

 listen 80;

 server_name {{ inventory_hostname }};

 root /var/www/html/;

 location / {

 proxy_pass http://myproxy;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Host $host;

 proxy_redirect off;

 }

}

This is as simple of configuration as it gets for a load balancer. As you see this Ansible/Jinja template includes a
For Loop:

{% for host in groups[‘webapps’] %}

 server {{ host }};

 {% endfor %}

For loops in Ansible/Jinja templates are essentially:

{% for my_var in my_list %}{{ my_var }}{% endfor %}

Assuming that my_list is an iterable variable, you can use the for loop template tag. In this case, my_var is the
looping variable and is arbitrary.

In our template, however, we use the groups[‘webapps’] as our iterable. How is this possible?

	● webapps is coming directly from inventory.ini . You may recall it’s simpy an inventory group
	● groups is a builtin special variable for Ansible templates. (Just like inventory_hostname
	● Inventory groups are iterable by default (even if there’s only 1 member).
	● In place of {{ inventory_hostname }} , we could use {{ groups[‘loadbalancer’][0] }} -- pretty neat huh?

Chapter 5: Ansible - Inventory Groups & Load Balancing

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html

 | 78

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now let’s update our playbook.

devops/ansible/main.yaml

- hosts: webapps

 become: yes

 vars:

 title: Hello there

 description: Some more news!

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

 - name: Update Nginx Default Homepage

 template:

 dest: /var/www/html/index.nginx-debian.html

 src: ./templates/nginx.default.html

- hosts: loadbalancer

 become: yes

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

 - name: Add Nginx Config

 template:

 dest: /etc/nginx/sites-available/default

 src: ./templates/nginx.conf

 - name: Enable New Nginx Config

 file:

 dest: /etc/nginx/sites-enabled/default

 src: /etc/nginx/sites-available/default

 state: link

 - name: Reload Nginx

 service:

 name: nginx

 state: reloaded

Chapter 5: Ansible - Inventory Groups & Load Balancing

 | 79

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s hone in on the new aspects here

	● template: - Notice that I replaced all instances of copy for template . These two modules do almost the
exact same thing but template will work more consistently when using Jinja template replacement (like
we’ve been doing). You’ll see projects using these two interchangeably.

	● file: This module is made to move (or link) files on your remote machine. In our case we link newly created
(from a template) /etc/nginx/sites-available/default to /etc/nginx/sites-available/default so nginx
knows what configuration to use (our load balancer)

	● service: Linux machines have a lot of services that we can use. In the case of nginx , if we make configura-
tion changes we want to ensure nginx is reloaded (You can also use restarted but reloaded does not turn
off nginx and start it back up it just refreshes it’s configuration).

Optionally, let’s update the HTML file for our webapps and the default nginx web page. This will just verify our
load balancer is working correctly by showing a different {{ inventory_hostname }} every time the load balancer
is accessed (ie the IP Address directly).

templates/nginx.default.html

<!DOCTYPE html>

<html>

 <body>

 <h1>{{ title }} - {{ inventory_hostname }}</h1>

 <p>{{ description }}</p>

 <div>

 {% for host in groups[‘webapps’] %}

 <p>{{ host }}</p>

 {% endfor %}

 {{ groups[‘loadbalancer’] }}

 </div>

 </body>

</html>

Chapter 5: Ansible - Inventory Groups & Load Balancing

 | 80

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Import Playbooks
Now it’s time to break apart our main.yaml into smaller chunks. This will allow our code to stay DRY (don’t
repeat yourself) as well as simplify the requirements each host may have.

Let’s start by splitting up main.yaml . First we’ll create a new module called install-nginx.yaml (notice that I
created a new folder called playbooks

devops/ansible/playbooks/install-nginx.yaml

- hosts: all

 become: yes

 tasks:

 - name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

The only real update here is we made hosts be all.

Next up, our load balancer

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 tasks:

 - name: Add Nginx Config

 template:

 src: ../templates/nginx.conf

 dest: /etc/nginx/sites-available/default

 - name: Enable New Nginx Config

 file:

 src: /etc/nginx/sites-available/default

 dest: /etc/nginx/sites-enabled/default

 state: link

 - name: Reload Nginx

 service:

 name: nginx

 state: reloaded

Chapter 5: Ansible - Import Playbooks

 | 81

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now our webapps config:

devops/ansible/playbooks/webapps.yaml

- hosts: webapps

 become: yes

 vars:

 title: Hello there

 description: Some more news!

 tasks:

 - name: Update Nginx Default Homepage

 template:

 dest: /var/www/html/index.nginx-debian.html

 src: ../templates/nginx.default.html

Notice that I had to update the template:src from templates/ to ../templates/ because we moved these play-
books into a new subdirectory.

If you omit templates/ from a template module, Ansible will automatically look in the relative templates folder.
This means inside of the directory playbooks/ you can add a folder called templates/ and store all your tem-
plates then reference them just with the name of the file. Personally, I like writing full relative paths to make it
easier to debug later if needed.

And finally, we can now import each one of these playbooks into main.yaml . Remember, the order you declare
items in Ansible Playbooks is the order it will execute. The same is true for importing playbooks:

devops/ansible/main.yaml

- name: Install Nginx

 import_playbook: ./playbooks/install-nginx.yaml

- name: Update Webapps

 import_playbook: ./playbooks/webapps.yaml

- name: Configure LoadBalancer

 import_playbook: ./playbooks/loadbalancer.yaml

Chapter 5: Ansible - Import Playbooks

 | 82

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now run:

ansible-playbook main.yaml

Every time you run this now you should see that the task Reload Nginx will always run so you’ll see changed=1
for at least the loadbalancer group.

Ansible Role Basics
Now it’s time to move on to Ansible roles. In the previous section we installed nginx on all hosts. This would be
great if we needed NGINX on all hosts but, as we will find later in this chapter, that is not always true.

Roles help solve this issue. Let’s create an nginx role.

We start by creating the roles and nginx folder. The roles folder is required, the nginx folder is just the role
name.

mkdir -p roles/nginx

Now that we have a role named nginx we’re going to make tasks that are associated to this role. To do this,
we’ll create a new folder called tasks with a file called `main.yaml`.

So here’s the format we must follow:

<project_dir>/roles/<role_name>/tasks/main.yaml

We’ll see more roles later. For now, let’s create the task we need.

devops/ansible/roles/nginx/tasks/main.yaml

- name: Install Nginx

 apt:

 name: nginx

 state: present

 update_cache: yes

Chapter 5: Ansible - Import Playbooks / Ansible Role Basics

 | 83

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The key to this file is it’s no longer a playbook, it’s just a list of tasks that you want this role to perform. Now, in
playbooks, to use this role’s task we do this:

devops/ansible/playbooks/example.yaml

- hosts: all

 become: yes

 roles:

 - ./../roles/nginx

We’ll see how this works once we use it practically. Let’s do that now:

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 roles:

 - ./../roles/nginx

 tasks:

 - name: Add Nginx Config

 template:

 src: ./../templates/nginx.conf

 dest: /etc/nginx/sites-available/default

 - name: Enable New Nginx Config

 file:

 src: /etc/nginx/sites-available/default

 dest: /etc/nginx/sites-enabled/default

 state: link

 - name: Reload Nginx

 service:

 name: nginx

 state: reloaded

devops/ansible/playbooks/webapps.yaml

- hosts: webapps

 become: yes

 vars:

Chapter 5: Ansible - Ansible Role Basics

 | 84

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 title: Hello there

 description: Some more news!

 roles:

 - ./../roles/nginx

 tasks:

 - name: Update Nginx Default Homepage

 template:

 dest: /var/www/html/index.nginx-debian.html

 src: ./../templates/nginx.default.html

devops/ansible/main.yaml

- name: Update Webapps

 import_playbook: ./playbooks/webapps.yaml

- name: Configure LoadBalancer

 import_playbook: ./playbooks/loadbalancer.yaml

Let’s run this:

ansible-playbook main.yaml

Now we’ll see that our nginx role runs prior to the other tasks in each playbook. How cool is that?

Ansible Handlers
When tasks are complete, we have the option to notify another task. We do this with the notify module coupled
with an Ansible handler.

Let’s implement it:

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 roles:

Chapter 5: Ansible - Ansible Role Basics / Ansible Handlers

 | 85

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 - ./../roles/nginx

 tasks:

 - name: Add Nginx Config

 template:

 src: ./../templates/nginx.conf

 dest: /etc/nginx/sites-available/default

 notify: reload nginx

 - name: Enable New Nginx Config

 file:

 src: /etc/nginx/sites-available/default

 dest: /etc/nginx/sites-enabled/default

 state: link

 handlers:

 - name: reload nginx

 service:

 name: nginx

 state: reloaded

The format is:

notify: <some name>

handlers:

 - name: <some name>

If <some name> is not identical, the handler will not execute. notify will only trigger if something in that task
changes. In this case, the handler will only be triggered if template:src: changes. This ensures we’re not reload-
ing NGINX, or running any other task unnecessarily.

Lastly, the handler will run after all other tasks are completed. When one task is complete, you can run another
one immediately after. If you need a task to run right after another task, make it a task itself.

Chapter 5: Ansible - Ansible Handlerst

 | 86

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Handlers in Roles
Here’s a situation where we definitely want to move our handlers into the NGINX role. This is pretty simple to do.
Let’s start with creating the role handler:

The format is almost identical to role tasks but we use the handlers folder instead like:

<project_dir>/roles/<role_name>/handlers/main.yaml

In our case, we’ll create the following handlers:

devops/ansible/roles/nginx/handlers/main.yaml

- name: reload nginx

 service:

 name: nginx

 state: reloaded

- name: restart nginx

 service:

 name: nginx

 state: restarted

Notice that I have both the nginx service reload and restart ability. They are the same as doing sudo service
nginx reload and sudo service nginx restart respectively.

This means I can run notify: reload nginx or notify: restart nginx in any task that has a playbook that imple-
ments the nginx role.

Here’s what that looks like:

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 roles:

 - ./../roles/nginx

 tasks:

 - name: Add Nginx Config

Chapter 5: Ansible - Handlers in Roles

 | 87

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 template:

 src: ./../templates/nginx.conf

 dest: /etc/nginx/sites-available/default

 notify: reload nginx

 - name: Enable New Nginx Config

 file:

 src: /etc/nginx/sites-available/default

 dest: /etc/nginx/sites-enabled/default

 state: link

devops/ansible/playbooks/webapps.yaml

- hosts: webapps

 become: yes

 vars:

 title: Hello there

 description: Some more news!

 roles:

 - ./../roles/nginx

 tasks:

 - name: Update Nginx Default Homepage

 template:

 dest: /var/www/html/index.nginx-debian.html

 src: ./../templates/nginx.default.html

 notify: reload nginx

Notice that now both playbooks reload NGINX while only 1 did before.

Install Docker via Role
Now that we understand a few Ansible fundamentals, it’s time to install Docker using a role.

We’ll start by creating our Docker role folders:

mkdir -p roles/docker/tasks

mkdir -p roles/docker/handlers

Chapter 5: Ansible - Handlers in Roles / Install Docker via Role

 | 88

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Before we create our tasks, let’s talk about what needs to happen.

	● Install Docker via the Docker install script on https://get.docker.com. This is my preferred method to install
Docker on Linux machines. You cannot use apt to install Docker at this time.

	● Each time we run the Docker role in Ansible, we want to check that Docker is installed/running. To do this,
I will run command -v Docker as a shell command. This shell command will let us know if docker is an
executable on our remote Linux machines.

	● If command -v docker fails, we want to have all tasks continue to run. As you may have experienced
already, if a task fails in Ansible, other tasks are skipped. To ensure the tasks continue, we’ll use the shell
command command -v docker >/dev/null 2>&1. To try it yourself, SSH into one of your virtual machines
and run command -v some_fake_command_that_doe_not_exist >/dev/null 2>&1.

Let’s see how the above works within our role’s tasks:

devops/ansible/roles/docker/tasks/main.yaml

- name: Grab Docker Install Script

 get_url:

 url: https://get.docker.com

 dest: /tmp/get-docker.sh

 mode: 0755

 notify: exec docker script

- name: Verify Docker Command

 shell: command -v docker >/dev/null 2>&1

 ignore_errors: yes

 register: docker_exists

- debug: msg=”{{ docker_exists.rc }}”

- name: Trigger docker install script if docker not running

 shell: echo “Docker command”

 when: docker_exists.rc != 0

 notify: exec docker script

Let’s break down the new items:
	● get_url: This can download a file from a URL. mode: 0755 gives this downloaded file executable

permission
	● shell: This is how you can write shell commands. In this case, we’re just verifying that the command exists.
	● ignore_errors: yes Ensures future tasks run. In this case, if we do have errors from our shell: command,

there’s a good chance that Docker was not installed correctly from the previous task.
	● register Stores the result of the task in a variable we can reference elsewhere. In this case, we use the

variable docker_exists , but you can choose any variable you’d like.

Chapter 5: Ansible - Install Docker via Role

https://get.docker.com

 | 89

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● debug: msg=”{{ docker_exists.rc }}” Conveniently highlights what the registered variable docker_exists is
set to while you run the playbook(s) that reference this role.

	● when: docker_exists.rc != 0 Allows us to run a task based on a condition. This is similar to notify, but in this
case, we only want to notify if this condition is met.

Now let’s create the handler for the above Docker task(s).

devops/ansible/roles/docker/handlers/main.yaml

- name: exec docker script

 shell: /tmp/get-docker.sh

This handler will run the output of our get_url tasks from above.

Update the following files:
	● devops/ansible/playbooks/loadbalancer.yaml
	● devops/ansible/playbooks/webapps.yaml

To include these roles:

 roles:

 - ./../roles/nginx

 - ./../roles/docker

All we did was add - ./../roles/docker to our roles for each playbook.

Now run ansible-playbook main.yaml .

You should see this block repeated a few times:

TASK [./../roles/docker : Verify Docker Command] *******************************

fatal: [69.164.221.67]: FAILED! => {“changed”: true, “cmd”: “command -v docker >/dev/null

2>&1”, “delta”: “0:00:00.004127”, “end”: “2022-01-27 17:24:06.202568”, “msg”: “non-zero

return code”, “rc”: 127, “start”: “2022-01-27 17:24:06.198441”, “stderr”: “”, “stderr_

lines”: [], “stdout”: “”, “stdout_lines”: []}

...ignoring

The key is that it says ignoring which is exactly what we want to happen when we verify the Docker command.
Note that “rc” is 127 in the error above.

Chapter 5: Ansible - Install Docker via Role

 | 90

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Later we’ll see:

TASK [./../roles/docker : debug] ***

ok: [69.164.222.142] => {

 “msg”: “127”

}

ok: [96.126.104.175] => {

 “msg”: “127”

}

ok: [69.164.221.67] => {

 “msg”: “127”

}

This debug message is 127, just like the “rc” value in the error message before.
We can see that docker_exists.rc != 0 , so this condition will be triggered. The Verify Docker Command sets the
variable docker_exists to the output you see in the error itself. Pretty cool huh?

The play recap should look something like this:

69.164.221.67 : ok=8 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=1

69.164.222.142 : ok=8 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=1

69.164.222.227 : ok=9 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=1

96.126.104.175 : ok=8 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=1

If we run ansible-playbook main.yaml again, we should have a play recap like this:

69.164.221.67 : ok=6 changed=1 unreachable=0 failed=0 skipped=1

rescued=0 ignored=0

69.164.222.142 : ok=6 changed=1 unreachable=0 failed=0 skipped=1

rescued=0 ignored=0

69.164.222.227 : ok=7 changed=1 unreachable=0 failed=0 skipped=1

rescued=0 ignored=0

96.126.104.175 : ok=6 changed=1 unreachable=0 failed=0 skipped=1

rescued=0 ignored=0

Chapter 5: Ansible - Install Docker via Role

 | 91

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Further, if we SSH into any of the hosts that used the Docker role, we should be able to run docker ps and see:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

This section might take some time to digest. I recommend that you do it a few times if you need to. Using debug
can be pretty helpful, so can attempting all of these tasks manually on a freshly provisioned Linode instance.

Purging Packages with Roles
Undoing installations is another thing you’ll need to do from time to time. Honestly, it might be easier to provi-
sion a new instance than to create a bunch of purging rules.

Nevertheless, we’ll look at how to purge nginx from our systems since we’re going to be using Docker (and the
Docker-based nginx) going forward.

Make the role nginx_purge by doing the following:

mkdir -p roles/nginx_purge/tasks

echo “” > roles/nginx_purge/tasks/main.yaml

And create the role:

devops/ansible/roles/nginx_purge/tasks/main.yaml

- name: Remove Nginx

 apt:

 name: “{{ item }}”

 state: absent

 purge: yes

 with_items:

 - nginx

- name: Stop Nginx Services

 service:

 name: “{{ item }}”

 state: stopped

 with_items:

 - nginx

 ignore_errors: yes

Chapter 5: Ansible - Install Docker via Role / Purging Packages with Roles

 | 92

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

So we now see a new way to write tasks, the with_items: method. Think of with_items as a for loop that will
iterate through the list of items you designate in that block.

Here’s a simple way to understand with_items

- debug: msg=”{{ item }}”

 with_items:

 - abc

 - 123

 - easy peasy

This shows us that with_items can be used nearly anywhere in Ansible. When I see this, I think of it in terms of
Python:

with_items = [‘abc’, 123, ‘easy peasy’]

for item in with_items:

 print(f”msg={item}”)

The reason I think of it this way reminds me that item is always the iterated variable when you use with_items

Whenever you iterate in this way, you can limit the amount of redundancy in your steps. Designing our ng-
inx_purge role in this way allows us to modify the rule to remove/purge any other dependencies we may want to
remove.

Let’s implement this role just on our load balancer playbook for now:

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 roles:

 - ./../roles/nginx_purge

 - ./../roles/docker

...

The ... just represents we made no changes to that portion of the document.

Chapter 5: Ansible - Purging Packages with Roles

 | 93

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now run:

ansible-playbook main.yaml

Now our load balancer is down completely. If we were to provision a new instance for our load balancer, the only
new item added would be Docker. In other words, it will not purge something from our system that isn’t already
there.

Docker-based Nginx Load Balancer
Now we’re going to modify our load balancer to leverage Docker’s system. We are not using the community-man-
aged version of a Docker plugin at this time because it’s not officially supported by the core Ansible development
team.

Further, if you are new to Docker, this will be a great reference for you to use as you learn more about Docker and
running various commands.

Before we jump into the new loadbalancer.yaml playbook, let’s make a minor change to a task in the Docker
role:

In devops/ansible/roles/docker/tasks/main.yaml update:

- name: Trigger docker install script if docker not running

 shell: echo “Docker command”

 when: docker_exists.rc != 0

 notify: exec docker script

to

- name: Run docker install script if docker not running

 shell: /tmp/get-docker.sh

 when: docker_exists.rc != 0

This update ensures this task is run immediately instead of running as a handler. In the playbook below, you can
hopefully see why (hint: we use Docker commands):

Chapter 5: Ansible - Purging Packages with Roles / Docker-based Nginx Balancer

 | 94

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 roles:

 - ./../roles/nginx_purge

 - ./../roles/docker

 tasks:

 - name: Verify /var/www/ exists

 file:

 path: /var/www

 state: directory

 mode: 0755

 - name: Add Nginx Config

 template:

 src: ./../templates/nginx.conf

 dest: /var/www/nginx.conf

 - name: Has Running Docker Images

 shell: docker ps -aq >/dev/null 2>&1

 register: containers_running

 ignore_errors: yes

 - debug: msg=”{{ containers_running.rc }}”

 - name: Docker Stop Running Containers

 shell: docker stop $(docker ps -aq)

 when: containers_running.rc != 0

 - name: Docker Remove Previous Containers

 shell: docker rm $(docker ps -aq)

 when: containers_running.rc != 0

 - name: Run Docker-based Nginx

 shell: |

 docker run \

 --restart always \

 -v /var/www/nginx.conf:/etc/nginx/conf.d/default.conf:ro \

 -p 80:80 \

 -d nginx

Let’s break this down:
	● roles: At this point, we should be able to remove ./../roles/nginx_purge , but I am leaving it there for now.
	● Task name: Verify /var/www/ exists This ensures the folder exists so we can use it to store our NGINX con-

figuration. What might not be clear is that when you install nginx using apt this folder is generated for
you. Since we never intend to install nginx on this machine, we must create the directory.

	● ask name: Add nginx Config This has a destination to the previous file: module’s directory.
	● Task name: Has Running Docker Images . The command docker ps -aq will show any containers that are

currently running. As of our first run, we have none.

Chapter 5: Ansible - Docker-based Nginx Balancer

 | 95

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● Task name: Docker Stop Running Containers If we do have running containers, we want to stop all of
them as we prep to replace the configuration.

	● Task name: Docker Remove Previous Containers once we stop running containers, we’ll remove it so we
can rebuild a fresh NGINX container.

	● name: Run Docker-based Nginx here’s where we run our Docker-based NGINX configuration. the keys for
this are:

	● --restart always this will ensure that the Docker image will restart if our remote host is rebooted.
	● -v /var/www/nginx.conf:/etc/nginx/conf.d/default.conf:ro This will attach the nginx.conf file we added

in the task name: Add Nginx Config . Keep in mind that the Docker container pulls files from our remote
machine (our ansible host) and never our local machine. The Docker-related items are only happening on
the remote host.

	● -p 80:80 This will map the Docker port 80 to the remote host port 80 so external HTTP web traffic can
access the contents within the Docker container.

	● -d This is called detached mode and allows for the container to run as a background service
	● nginx In this case, it’s the official Docker nginx image. Docker is smart enough to know that.

Now run:

ansible-playbook main.yaml

If you open up the IP address for your load balancer service, you will see that the Docker-based NGINX load bal-
ancer is now running!

When it comes to NGINX, I often opt for the pure NGINX implementation since it’s much easier to update/reload
NGINX configuration changes. That said, Docker-based NGINX is not difficult and becomes pretty useful when
you start moving into other areas of Docker like Docker Compose, Docker Swarm, and Kubernetes.

Using Facts & Variables
Whenever we set a variable using register: we can use that variable throughout the playbook. set_fact is anoth-
er way to set key/value pairs that allow us to use a variable across our entire ansible-playbook run.

First, let’s take a look at a register block:

- name: Add Nginx Config

 template:

 src: ./../templates/nginx.conf

 dest: /var/www/nginx.conf

 register: nginx_conf_dict

Chapter 5: Ansible - Docker-based Nginx Balancer / Using Facts & Variables

https://hub.docker.com/_/nginx

 | 96

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Using register here will provide future tasks with a dictionary of values from the nginx_conf_dict variable. In
the case of template , we’ll have access to nginx_conf_dict.path which is the destination path for the NGINX
configuration file on the host system.

Using set_fact we can take the nginx_conf_dict.path and set it to a new variable:

- set_fact:

 nginx_lb_conf_path: “{{ nginx_conf_dict.path }}”

After we do both of these, we can debug the results with:

- debug: msg=”nginx_conf_dict: {{ nginx_conf_dict }}”

- debug: msg=”nginx_lb_conf_path: {{ nginx_lb_conf_path }}”

We can also use variables as a backup to nginx_lb_conf_path with:

- name: Debug Docker-based Nginx Conf

 vars:

 - _lb_backup_path: /etc/nginx/conf.d/default.conf

 debug: msg=”{{ nginx_lb_conf_path | default(_lb_backup_path) }}”

The debug block shows us how to use a fallback variable if our set_fact fails to set correctly.

Let’s take a look at this in our load balancer playbook:

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

 roles:

 - ./../roles/docker

 tasks:

 - name: Verify /var/www/ exists

 file:

 path: /var/www

 state: directory

 mode: 0755

Chapter 5: Ansible - Using Facts & Variables

 | 97

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 - name: Add Nginx Config

 template:

 src: ./../templates/nginx.conf

 dest: /var/www/nginx.conf

 register: nginx_conf_dict

 - debug: msg=”{{ nginx_conf_dict }}”

 - set_fact:

 nginx_lb_conf_path: “{{ nginx_conf_dict.path }}”

 - debug: msg=”{{ nginx_lb_conf_path }}”

 - name: Debug Docker-based Nginx Conf

 vars:

 - _nginx_lb_path: /etc/nginx/conf.d/default.conf

 debug: msg=”{{ nginx_lb_conf_path | default(_nginx_lb_path) }}”

 - name: Has Running Docker Images

 shell: docker ps -aq >/dev/null 2>&1

 register: containers_running

 ignore_errors: yes

 - name: Docker Stop Running Containers

 shell: docker stop $(docker ps -aq)

 when: containers_running.rc == 0

 - name: Docker Remove Previous Containers

 shell: docker rm $(docker ps -aq)

 when: containers_running.rc == 0

 - name: Run Docker-based Nginx

 vars:

 - _nginx_lb_path: /etc/nginx/conf.d/default.conf

 shell: |

 docker run \

 -v {{ nginx_lb_conf_path | default(_nginx_lb_path) }}:/etc/nginx/conf.d/default.

conf:ro \

 -p 80:80 \

 -d nginx

Docker Container Roles
We’re going to create a role that’s specific to Docker containers. The current Docker role is primarily to ensure
Docker is installed and running. Next, we’ll implement a solution to manage Docker containers.

mkdir -p roles/docker_containers/tasks

mkdir -p roles/docker_containers/handlers

We need a task that checks if we have Docker containers running. We’ll do that with:

Chapter 5: Ansible - Using Facts & Variables / Docker Container Roles

 | 98

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

devops/ansible/roles/docker_containers/tasks/main.yaml

- name: Has Running Docker Images

 shell: docker ps -aq >/dev/null 2>&1

 register: containers_running

 ignore_errors: yes

Now we’re going to implement handlers based on these tasks. As you’ll notice, one of the handlers will even run
our load balancer:

devops/ansible/roles/docker_containers/handlers/main.yaml

- name: docker stop containers

 shell: docker stop $(docker ps -aq)

 when: containers_running.rc == 0

 ignore_errors: yes

- name: docker remove containers

 shell: docker rm $(docker ps -aq)

 when: containers_running.rc == 0

 ignore_errors: yes

- name: docker run nginx lb

 vars:

 - _nginx_lb_path: /etc/nginx/conf.d/default.conf

 shell: |

 docker run \

 --restart always \

 -v {{ nginx_lb_conf_path | default(_nginx_lb_path) }}:/etc/nginx/conf.d/default.con-

f:ro \

 -p 80:80 \

 -d nginx

Nothing about the above should be new here; we’re just highlighting Ansible’s features while also making our
load balancer playbook more concise. Let’s take a look:

devops/ansible/playbooks/loadbalancer.yaml

- hosts: loadbalancer

 become: yes

Chapter 5: Ansible - Docker Container Roles

 | 99

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 roles:

 - ./../roles/docker

 - ./../roles/docker_containers

 vars:

 - nginx_config_dest: /var/www/nginx.conf

 tasks:

 - name: Verify /var/www/ exists

 file:

 path: /var/www

 state: directory

 mode: 0755

 - name: Add Nginx Config

 template:

 src: ./../templates/nginx.conf

 dest: “{{ nginx_config_dest }}”

 register: nginx_conf_dict

 - debug: msg=”{{ nginx_conf_dict }}”

 - set_fact:

 nginx_lb_conf_path: “{{ nginx_config_dest }}”

 - debug: msg=”{{ nginx_lb_conf_path }}”

 - name: Debug Docker-based Nginx Conf

 vars:

 - _nginx_lb_path: /etc/nginx/conf.d/default.conf

 debug: msg=”{{ nginx_lb_conf_path | default(_nginx_lb_path) }}”

 - name: Trigger Docker Container Changes

 shell: echo “Triggering docker changes”

 notify:

 - docker stop containers

 - docker remove containers

 - docker run nginx lb

 when: nginx_conf_dict.changed == true

A couple of things to note:
	● The set_fact for nginx_lb_conf_path matches the nginx_lb_conf_path that’s in the handlers in the

docker_containers role.
	● In the last task on this playbook, we notify each handler in the order we want them to run. These noti-

fications will only trigger when the NGINX configuration has changed. A load balancer will only need to
change when new instance(s) are added to the mix of web app hosts.

Chapter 5: Ansible - Docker Container Roles

 | 100

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Copy Web App Project
We’re going to bring our web application into our webapps group and the virtual machines listed there. In the
Clone Sample Python Web App section, we cloned a repo called iac-python . It contains a Dockerfile that we
intend to use.

Where you cloned that app will determine our root_dir variable below. In my case it’s /Users/cfe/Dev/iac-ansi-
ble .

devops/ansible/playbooks/webapps.yaml

- hosts: webapps

 become: yes

 vars:

 root_dir: “~/Dev/iac-ansible”

 dest_dir: /var/www

 roles:

 - ./../roles/nginx_purge

 - ./../roles/docker

 tasks:

 - name: Setup /var/www/src

 file:

 path: “{{ dest_dir }}/src”

 state: directory

 mode: 0755

 - name: Copy Src folder

 copy:

 src: “{{ root_dir }}/src/”

 dest: “{{ dest_dir }}/src/”

 - copy:

 src: “{{ root_dir }}/{{ item }}”

 dest: “{{ dest_dir }}”

 with_items:

 - Dockerfile

 - requirements.txt

 - entrypoint.sh

Let’s break this down:
	● root_dir : Using ”~/Dev/iac-ansible” Is a shortcut to /Users/cfe/Dev/iac-ansible/ . This value pretty much

only works on my local machine. If we want to make this project truly reusable we need a relative path to
the project root such as ”./../../../” instead. Try this out on your machine until it works as intended.

	● Notice how I am reusing the nginx_purge role? How cool is that?

Chapter 5: Ansible - Copy Web App Project

 | 101

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● copy : You might be tempted to copy your entire project folder -- this is not ideal because you might have
a lot of files that your web app does not need to run. What’s more, you might accidentally copy files that
should remain secret (such as . env or inventory.ini or other sensitive files.).

There are a few important things to note about what I am attempting to accomplish with this playbook:
	● A practical example using Ansible to deploy a Docker-based app with as little complexity as possible.
	● This particular playbook would be better suited to run on GitHub Actions and/or GitLab CI/CD which adds

complexity but, in general, a lot of files are never checked in (or sent to) repos on GitHub/GitLab limiting
the possibility that you accidentally expose sensitive files.

	● You can build a Docker image in many ways, this is the foundation for using Ansible to build a Docker
image.

Build & Run our Web Apps
We need to update our docker_containers role to account for the Docker image we want to build and run for our
webapps.

We’ll add the following to devops/ansible/roles/docker_containers/handlers/main.yaml:

...

- name: docker build

 vars:

 _docker_app_name: app

 shell:

 cmd: docker build -f Dockerfile -t “{{ docker_app_name | default(_docker_app_name) }}”

.

 chdir: “{{ dest_dir }}”

- name: docker run app

 vars:

 _docker_app_name: app

 shell: |

 docker run \

 --restart always \

 -p 80:8001 \

 -e PORT=8001 \

 -d “{{ docker_app_name | default(_docker_app_name) }}”

Chapter 5: Ansible - Copy Web App Project / Build & Run our Web Apps

 | 102

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s break this down:
	● docker build This handler builds a Docker container.
	● shell:cmd: This is the command we need to run to build our container. Notice that I am adding in dock-

er_app_name so we know what tag to run.
	● shell:chdir This shows us how we can change directories for this shell command. Remember that when

we copied the files we set the destination to /var/www.
	● docker run app This handler will run the app that we specify.

Here’s a breakdown of the Docker commands:
	● docker run The default Docker command to run a container image.
	● --restart always This will ensure the container restarts if the virtual machine restarts.
	● -e PORT=8001 This is the environment variable for the Docker container to tell Python to run on port 8001
	● -p 80:8001 Maps the external port 80 to the internal port 8001 . 8001 is the port our Python application

will run on within the Docker container. Port 80 is used to expose any given host to standard HTTP traffic.
(Port 80 also allows us to use server {{ host }}; in our nginx.conf . If you wanted to use a different port for
your load balancer configuration, such as 8312, you’d need to update nginx.conf to server {{ host }}:8312;
and the above Docker port mapping from -p 80:8001 to -p 8312:8001 . You may also need to update your
firewall settings if you have them. Sticking with port 80 simplifies things for us here.

	● -d runs this Docker container in the background (so it can keep running after Ansible completes and so it
doesn’t keep Ansible running either).

	● ”{{ docker_app_name | default(_docker_app_name) }}” this is a reference to the tag we’re going to use. In
theory, we could use the Docker load balancer in this way too but there’s no need.

Finally, let’s update our webapps playbook:

devops/ansible/playbooks/webapps.yaml

- hosts: webapps

 become: yes

 vars:

 root_dir: “~/iac-ansible”

 dest_dir: /var/www/app

 docker_app_name: app

 roles:

 - ./../roles/docker

 - ./../roles/docker_containers

 tasks:

 - name: Setup /var/www/src

 file:

 path: “{{ dest_dir }}/src”

 state: directory

 mode: 0755

 - name: Copy Src folder

Chapter 5: Ansible - Build & Run our Web Apps

 | 103

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 copy:

 src: “{{ root_dir }}/src/”

 dest: “{{ dest_dir }}/src/”

 register: app_folder

 - copy:

 src: “{{ root_dir }}/{{ item }}”

 dest: “{{ dest_dir }}”

 register: app_files

 with_items:

 - Dockerfile

 - requirements.txt

 - entrypoint.sh

 - name: Trigger Build & Run

 shell: echo “Running build”

 # when: (app_files.changed) or (app_folder.changed)

 notify:

 - docker build

 - docker stop containers

 - docker remove containers

 - docker run app

Now let’s run this:

ansible-playbook main.yaml

What you should notice is it takes significantly longer to run this time around. That’s because we’re now building
the Docker container inline on each one of our virtual machines.

Pros & Cons of Building Docker Images on each Host

Pros
	● Less complexity.
	● The build happens on the same machine as the run ensuring the built image will almost certainly run.
	● Less dependence on third-party services to build the image.
	● Less dependence on third-party services to store/host the built image.

Cons
	● Takes a long time; our machines are not optimized for building images, and we build n number of images

for n number of web servers (ugh, this is not great).
	● Pulls resources away from currently running application servers (docker build is not trivial on resources).
	● As you add more features to the web app (our Python app), the likelihood of copying files that should

remain hidden grows significantly.
	● Does not account for best practices for building Docker images (or CI/CD pipelines)

Chapter 5: Ansible - Build & Run our Web Apps

 | 104

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Okay, so why build Docker images in this way? It came down to less complexity. Remember, this entire chapter
covers Ansible and how to use it practically as an IaC tool.

Bonus: Automate with GitHub Actions
Below is a workflow to automate running Ansible Playbooks within GitHub. One of the primary things you’ll need
to do is create new ssh keys and set ANSIBLE_PRIVATE_KEY in your repo’s secrets.

To make this workflow work:
	● Your entire project must exist in a GitHub repo you own. You can import my repo.
	● You must set up the following repo secrets:

	◦ �ANSIBLE_PRIVATE_KEY (this is an SSH private key; you must have a corresponding SSH public key
installed on your instances).

	◦ �LOAD_BALANCER_IP : provision a Linode instance (with the public key from above) and store the IP
address for it.

	◦ �WEB_APP_1_IP , WEB_APP_2_IP , and WEB_APP_3_IP , Create 3 instance(s) for your web apps. (if you
need less just update the Create inventory file step below.

.github/workflows/main.yaml

This is a basic workflow to help you get started with GitHub Actions

name: Ansible CICD via Repo Inventory

Controls when the workflow will run

on:

 # Allows you to run this workflow manually from the Actions tab

 workflow_dispatch:

 # Uncomment below to trigger the workflow on push or pull request events but only for

the main branch

 # push:

 # branches: [main]

 # pull_request:

 # branches: [main]

A workflow run is made up of one or more jobs that can run sequentially or in parallel

jobs:

 # This workflow contains a single job called “build”

 build:

 # The type of runner that the job will run on

 runs-on: ubuntu-latest

Chapter 5: Ansible - Build & Run our Web Apps / Bonus: Automate with GitHub Actions

https://github.com/codingforentrepreneurs/iac-ansible

 | 105

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 steps:

 - uses: actions/checkout@v2

 - uses: actions/setup-python@v2

 with:

 python-version: ‘3.8’

 - name: Install Ansible

 run: |

 pip install ansible

 - name: Create PEM Key

 run: |

 cat << EOF > devops/ansible/private.pem

 ${{ secrets.ANSIBLE_PRIVATE_KEY }}

 EOF

 - name: Update key permissions

 run: |

 chmod 400 devops/ansible/private.pem

 - name: Create inventory file

 run: |

 cat << EOF > devops/ansible/inventory.ini

 [loadbalancer]

 ${{ secrets.LOAD_BALANCER_IP }}

 [webapps]

 ${{ secrets.WEB_APP_1_IP }}

 ${{ secrets.WEB_APP_2_IP }}

 ${{ secrets.WEB_APP_3_IP }}

 EOF

 - name: Add PEM Key Path to Ansible Config

 run: |

 cat << EOF > devops/ansible/ansible.cfg

 [defaults]

 ansible_python_interpreter=’/usr/bin/python3’

 deprecation_warnings=False

 inventory=./inventory.ini

 remote_user=”root”

 retries=2

 private_key_file = ./private.pem

 EOF

 - name: Run main playbook

 run: |

 cd devops/ansible

 ansible-playbook main.yaml

If you’re interested in learning more about GitHub workflows please let me know @justinmitchel on Twitter.

Chapter 5: Ansible - Bonus: Automate with GitHub Actions

 | 106

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Bonus 2: Integrating Ansible & Terraform
I like the combination of Ansible and Terraform managed through GitHub Actions. Assuming you did the Terra-
form Section here’s how you’d update a few files:

devops/tf/main.tf:

terraform {

 required_version = “>= 0.15”

 required_providers {

 linode = {

 source = “linode/linode”

 version = “1.25.0”

 }

 }

}

provider “linode” {

 token = var.linode_pat_token

}

resource “linode_instance” “cfe-loadbalancer” {

 image = “linode/ubuntu18.04”

 label = “loadbalancer”

 group = “CFE_Terrafrom_PROJECT”

 region = var.region

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

 root_pass = var.root_user_pw

 private_ip = true

 tags = [“loadbalancer”]

}

resource “linode_instance” “cfe-pyapp” {

 count = var.linode_instance_count

 image = “linode/ubuntu18.04”

 label = “pyapp-${count.index + 1}”

 group = “CFE_Terrafrom_PROJECT”

 region = var.region

 type = “g6-nanode-1”

 authorized_keys = [var.authorized_key]

Chapter 5: Ansible - Bonus 2: Integrating Ansible & Terraform

http://./04-terraform
http://./04-terraform

 | 107

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 root_pass = var.root_user_pw

 private_ip = true

 tags = [“webapps”]

}

resource “local_file” “ansible_inventory” {

 content = templatefile(“${local.templates_dir}/ansible-inventory.tpl”, { webapps=[for

host in linode_instance.cfe-pyapp.*: “${host.ip_address}”], loadbalancer=”${linode_in-

stance.cfe-loadbalancer.ip_address}” })

 filename = “${local.devops_dir}/ansible/inventory.ini”

}

This should be all that you need in main.tf if you followed the Terraform Section exactly.

Notice that the ansible_inventory resource references to filename = “${local.devops_dir}/ansible/inventory.ini” ?
This will change the inventory.ini file to match exactly what Terraform has.

devops/tf/templates/ansible-inventory.tpl

[webapps]

%{ for host in webapps ~}

${host}

%{ endfor ~}

[loadbalancer]

${loadbalancer}

How cool is this? Now you’ll run:

cd devops/terraform

terraform apply -auto-approve

cd ../ansible

ansible-playbook main.yaml

You can update this so it’s a GitHub Action workflow as well but that’s not something we’re going to cover at this
time.

Chapter 5: Ansible - Bonus 2: Integrating Ansible & Terraform

http://./04-terraform

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 | 109

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 6: Chef - Linode Configurations

Chapter 6

Chef
In this one, we’re going to examine how to automate configuration using Chef to deploy a Python app that lever-
ages a Docker container runtime.

One of the biggest differences between Chef and a few other IaC tools we cover in this book, is that Chef has an
agent running at all times. This means that in order to make changes to your infrastructure using Chef, your Chef
Infra Server must be running in addition to any nodes (aka virtual machines) you may need to update.

Chef also makes use of Ruby as a means for configuration. If you are familiar with Ruby, this is a welcome feature.
If you’re new to Ruby, it will take some getting used to.

A key advantage to Chef is the Chef Supermarket, which not only gives many pre-built examples that help you
provision infrastructure, but will continue to give you insights into best practices in crafting your Ruby
configuration files.

Linode Configurations
To get started we need a minimum of 3 Linode Instances provisioned. Login to the console and provision using
the following settings:

Chef Infra Server
	● Image: Ubuntu 18.04 (required)
	● Min Plan: Linode 8GB

Chef Workstation
	● Image: Ubuntu 18.04 (required)
	● Min Plan: Linode 1GB

Chef Node
	● Image: Ubuntu 18.04 (required)
	● Min Plan: Linode 1GB

I highly recommend adding your SSH Keys to each instance in order to ensure you can make configuration
changes.

Custom Domain
Chef requires a custom domain for your configuration. You can purchase a domain at sites like Name.com or
GoDaddy.com but the idea is that you purchase them from a reputable source.

Once you purchase a domain, be sure to add it to Linode Domains and update your nameservers on your domain
registrar.

https://cloud.linode.com/
http://./appendix-1-ssh-keys-in-console
https://cloud.linode.com/domains

 | 110

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The nameservers are:
	● ns1.linode.com
	● ns2.linode.com
	● ns3.linode.com
	● ns4.linode.com
	● ns5.linode.com

The domain I used is:

tryiac.com

After I provisioned my instances above, I have the following IP addresses:
	● 69.164.222.22 (for the infra-server)
	● 69.164.221.67 (for the workstation)
	● 69.164.222.142 (for the node)

From this, I’ll update my domain’s A records:
	● Hostname: chef , IP Address: 69.164.222.22 , TTL: 2 minutes
	● Hostname: workstation.chef , IP Address: 69.164.221.67 , TTL: 2 minutes
	● Hostname: node1.chef , IP Address: 69.164.222.142 , TTL: 2 minutes

Configure Each Linode Instance
Now that we have domain mappings and provision instances, we need to update hostnames for each virtual
machine.

Infra Server

ssh root@69.164.222.22

If you setup your SSH Keys correctly, you should be able to just login without a password.

Then update /etc/hostname

sudo nano /etc/hostname

Change it to:

chef.tryiac.com

Chapter 6: Chef - Linode Configurations

http://./appendix-1-ssh-keys-in-console

 | 111

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

You can also just run sudo hostnamectl set-hostname chef.tryiac.com. Or, to do it manually, edit the hosts file:

sudo nano /etc/hosts

Then add in:

127.0.0.1 chef.tryiac.com

After these are complete, run:

sudo reboot

Workstation

ssh root@69.164.221.67

If you setup your SSH Keys correctly, you should be able to just login without a password.

Then update /etc/hostname

sudo nano /etc/hostname

Change it to:

workstation.chef.tryiac.com

You can also just run sudo hostnamectl set-hostname workstation.chef.tryiac.com

Now update /etc/hosts

sudo nano /etc/hosts

Chapter 6: Chef - Linode Configurations

http://./appendix-1-ssh-keys-in-console

 | 112

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

127.0.0.1 localhost

127.0.0.1 workstation.chef.tryiac.com

69.164.222.227 chef.tryiac.com

69.164.221.67 workstation.chef.tryiac.com

69.164.222.142 node1.chef.tryiac.com

Be sure to include the IP address and domain of each instance for Chef.

Node 1

ssh root@69.164.222.142

If you setup your SSH Keys correctly, you should be able to just login without a password.

Then update /etc/hostname

sudo nano /etc/hostname

Change it to:

node1.chef.tryiac.com

You can also just run sudo hostnamectl set-hostname node1.chef.tryiac.com

Now update /etc/hosts

sudo nano /etc/hosts

127.0.0.1 localhost

127.0.0.1 node1.chef.tryiac.com

Chapter 6: Chef - Linode Configurations

http://./appendix-1-ssh-keys-in-console

 | 113

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

69.164.222.227 chef.tryiac.com

69.164.221.67 workstation.chef.tryiac.com

69.164.222.142 node1.chef.tryiac.com

Repeat the above steps for however many node(s) you need. In our case, a Chef node is going to run our
Docker-based web application.

Install Chef Infra Server
At this point, we have the following complete:

	● Provisioned Linode with Image: Ubuntu 18.04 (required) & Plan: Linode 8GB
	● Mapped A Name chef.tryiac.com to 69.164.222.22 (or your IP Address)
	● Host and Hostnames have been updated

SSH in

ssh root@chef.tryiac.com

You can also ssh into the IP address directly: ssh root@69.164.222.227

Update & Upgrade

sudo apt update && sudo apt upgrade

Download Chef Infra Server

Reference: https://downloads.chef.io/tools/infra-server

shell

export CHEF_SERVER_VERSION=”14.12.21”

wget “https://packages.chef.io/files/stable/chef-server/$CHEF_SERVER_VERSION/ubuntu/18.04/

chef-server-core_$CHEF_SERVER_VERSION-1_amd64.deb”

sudo dpkg -i chef-server-core_*.deb

rm chef-server-core_*.deb

Chapter 6: Chef - Linode Configurations / Install Chef Infra Server

Reference: https://downloads.chef.io/tools/infra-server

 | 114

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Upgrade & Restart

chef-server-ctl upgrade

chef-server-ctl start

chef-server-ctl cleanup

You must accept the licenses to continue

Configure server

sudo chef-server-ctl reconfigure --accept-license

You must accept the licenses to continue

Default settings /etc/opscode/chef-server.rb ref

Generate Password

python3 -c “import secrets;print(secrets.token_urlsafe(32))”

Make ~/.chef Directory

mkdir -p ~/.chef

Create Chef User ref

chef-server-ctl user-create username_lowercased FIRST_NAME [MIDDLE_NAME] LAST_NAME EMAIL

‘PASSWORD’ (options)

Example:

chef-server-ctl user-create jmitch JUSTIN MITCHEL hello@teamcfe.com ‘opUsWaBgwSwb6NHZ7E-

MouFgqfBhwsd-3_dZurwn_Nzw’ --filename ~/.chef/user.pem

Chapter 6: Chef - Install Chef Infra Server

https://docs.chef.io/server/config_rb_server_optional_settings/
https://docs.chef.io/server/ctl_chef_server/#user-create

 | 115

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Make a mistake? Just run sudo chef-server-ctl user-delete jmitch to delete the user.

Create Chef Organization ref

chef-server-ctl org-create orgname_lowercased “ORG_FULL_NAME” (options) --association_user

username_lowercased --filename ~/.chef/ORG_NAME

Example:

sudo chef-server-ctl org-create cfe “Team CFE” --association_user jmitch --filename

~/.chef/org.pem

Make a mistake? Just run sudo chef-server-ctl org-delete cfe to delete the organization.

Configure Chef Workstation
Bootstrap Command

ssh root@workstation.chef.tryiac.com

sudo apt update && sudo apt install git

Reference: https://downloads.chef.io/tools/workstation

CHEF_WORKSTATION_VERSION=”22.1.745”

wget https://packages.chef.io/files/stable/chef-workstation/$CHEF_WORKSTATION_VERSION/

ubuntu/18.04/chef-workstation_$CHEF_WORKSTATION_VERSION-1_amd64.deb

sudo dpkg -i chef-workstation_*.deb

rm chef-workstation_*.deb

Chapter 6: Chef - Install Chef Infra Server / Configure Chef Workstation

https://docs.chef.io/server/ctl_chef_server/#org-create
https://downloads.chef.io/tools/workstation

 | 116

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Setup Workstation Keys on SSH Server
Generate an SSH key on your workstation:

ssh-keygen -b 4096

Accept all the defaults with no passphrase (unless you need it)

ssh-copy-id root@chef.tryiac.com

Did you forget the password to root@chef.tryiac.com ? Then do this:

cat ~/.ssh/id_rsa.pub

Copy the result of cat ~/.ssh/id_rsa.pub

SSH into Chef Server

ssh root@chef.tryiac.com

Edit authorized keys

sudo nano ~/.ssh/authorized_keys

Add a new line and paste the results from your workstation cat command above (cat ~/.ssh/id_rsa.pub)

SSH back into Workstation

ssh root@workstation_ip

Generate Chef Repo on Workstation

cd ~/

chef generate repo chef-repo

Chapter 6: Chef - Configure Chef Workstation

 | 117

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

You must accept the licenses to continue

This command creates:
	● ~/chef-repo containing chefignore cookbooks data_bags environments LICENSE README.md roles
	● ~/chef-repo/.git which means it’s already driven by git
	● You can replace chef-repo with a custom value or .. Such as chef generate repo my-chef or chef gener-

ate repo . We are not going to change this name at this time to keep us all on the same page.

Copy Chef Server PEM Files to Workstation

mkdir -p ~/chef-repo/.chef/

scp root@chef.tryiac.com:~/.chef/*pem ~/chef-repo/.chef/

Remember that chef-repo is the name of the repo we created above.

Configure Knife on our Workstation

Create ~/chef-repo/.chef/config.rb :

current_dir = File.dirname(__FILE__)

log_level :info

log_location STDOUT

node_name ‘<username_lowercased>’

client_key “user.pem”

validation_client_name ‘<orgname_lowercased>-validator’

validation_key “org.pem”

chef_server_url ‘https://chef.tryiac.com/organizations/<orgname_lowercased>’

cache_type ‘BasicFile’

cache_options(:path => “#{ENV[‘HOME’]}/.chef/checksums”)

cookbook_path [“#{current_dir}/../cookbooks”]

Working Example:

~/chef-repo/.chef/config.rb

current_dir = File.dirname(__FILE__)

log_level :info

log_location STDOUT

node_name ‘jmitch’

Chapter 6: Chef - Configure Chef Workstation

 | 118

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

client_key “user.pem”

validation_client_name ‘cfe-validator’

validation_key “org.pem”

chef_server_url ‘https://chef.tryiac.com/organizations/cfe’

cache_type ‘BasicFile’

cache_options(:path => “#{ENV[‘HOME’]}/.chef/checksums”)

cookbook_path [“#{current_dir}/../cookbooks”]

Fetch Chef-Server Certs

cd ~/chef-repo

knife ssl fetch

This will result in:

WARNING: Certificates from chef.tryiac.com will be fetched and placed in your trusted_cert

 directory (/root/chef-repo/.chef/trusted_certs).

 Knife has no means to verify these are the correct certificates. You should

 verify the authenticity of these certificates after downloading.

Adding certificate for chef_tryiac_com in /root/chef-repo/.chef/trusted_certs/chef_try-

iac_com.crt

The warning is to let you know the certificates from our Chef Infra Server will be trusted on this workstation.

Verify config.rb

knife client list

You should see <orgname_lowercased>-validator , in my case I saw cfe-validator

Chapter 6: Chef - Configure Chef Workstation / Fetch Chef-Server Certs / Verify config.rb

 | 119

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Configure Chef Node from your Chef Workstation
As of now, the Chef Node (linode virtual machine) has not been configured to Chef. In order to configure this
node or any future nodes, we use the Chef Workstation.

In your Chef Workstation run:

cat /etc/hosts

You have at least:

127.0.0.1 localhost

127.0.0.1 workstation.chef.tryiac.com

69.164.222.227 chef.tryiac.com

69.164.221.67 workstation.chef.tryiac.com

69.164.222.142 node1.chef.tryiac.com

Notice that 69.164.222.142 node1.chef.tryiac.com is directly tied to the IP Address for the Chef Node.

On your workstation:

knife bootstrap 69.164.222.142 -x root -P password --node-name node1.chef.tryiac.com

Change password to the one you set while provisioning this server in the Linode console.

You should see:

The authenticity of host ‘69.164.222.142 ()’ can’t be established.

fingerprint is SHA256:RA3y0RArhs6Z9PU3HTdGHVQvXTQZL4lE9+3/B0VVVwA.

Are you sure you want to continue connecting

? (Y/N) Y

Be sure to type Y as I have above.

This command knife bootstrap will configure our node.

Chapter 6: Chef - Verify config.rb / Configure Chef Node from your Chef Workstation

 | 120

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

If you see Node node1 exists, overwrite it? (Y/N) , that means it’s already a Chef-managed node. If not, your node
will be configured now.

After you configure your node, it’s time to have chef automate installations for us.

Creating Cookbooks & Recipes
A cookbook is, not surprisingly, a collection of recipes. When it comes to managing our Chef project, we’ll almost
only use the Workstation server.

To understand the process of using cookbooks, we’ll use the name my_awesome_cookbook . You do not have to
run these commands just yet. We’ll do that when we create the Docker Cookbook.

On your Chef Workstation run:

cd ~/chef-repo/cookbooks

chef generate cookbook my_awesome_cookbook

After you generate a cookbook, you can upload it to your _Chef Infra Server_ with:

knife cookbook upload my_awesome_cookbook

After you upload the cookbook to your _Chef Infra Server_, you add the cookbook recipe(s) to your node(s)

knife node run_list add node1.chef.tryiac.com ‘recipe[my_awesome_cookbook]’

This command does a few things:
	● Targets the _Chef Node_ node1.chef.tryiac.com
	● Adds my_awesome_cookbook/recipes/default.rb to a run_list
	● The run_list has an order and it’s base on when you added the recipe to it (ie the above command)

To view our current run list we can:

knife node show node1.chef.tryiac.com

Chapter 6: Chef - Configure Chef Node from your Chef Workstation

 | 121

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

From there you’ll see something like:

Node Name: node1.chef.tryiac.com

Environment: _default

FQDN: node1.chef.tryiac.com

IP: 192.168.208.78

Run List: recipe[my_awesome_cookbook]

Roles:

Recipes:

Platform: ubuntu 18.04

Tags:

We can remove items from the run list using

knife node run_list remove node1.chef.tryiac.com ‘recipe[my_awesome_cookbook]’

this will give you:

node1.chef.tryiac.com:

 run_list:

Finally, to actually execute the Run List on our node(s) we use the knife ssh ref & other examples command:

On Workstation

sudo knife ssh ‘name:node1.chef.tryiac.com’ ‘sudo chef-client’

To run this on all nodes, you can simply use ”name:*” instead.* like:

sudo knife ssh ‘name:*’ ‘sudo chef-client’

If you see root@node1.chef.tryiac.com’s password: , be sure to add your SSH keys to your node from your work-
station with:

ssh-copy-id root@node1.chef.tryiac.com

Chapter 6: Chef - Configure Chef Node from your Chef Workstation

https://docs.chef.io/workstation/knife_ssh/
https://docs.chef.io/workstation/knife_ssh/#examples

 | 122

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

We did the same thing before with the Chef Infra Server

On node directly

sudo chef-client

In other words, if you have an SSH session in your node(s) you can run the chef client with sudo chef-client

To summarize
1.	 Create a cookbook with chef generate cookbook <yourcookbook>
2.	 Update the recipe on cookbooks/<yourcookbook>/recipes/default.rb (we’ll do this below)
3.	 Upload the cookbook to _Chef Infra Server_ after every recipe change knife cookbook upload <yourcook-

book>
4.	 �Add recipe/cookbook to the node(s) you want: knife node run_list add <nodename> “recipe[<yourcook-

book>]
5.	 Execute the recipe with sudo knife ssh name:node1 sudo chef-client

Let’s Get Practical
Now we’re going to implement the process to deploy a Python web application through Docker using Chef. At
this point, we’ve configured our environments so it’s time to put it to use.

What we’re doing only scratches the surface of what’s possible with Chef but it’s still a great way to get started
down the path of learning it more.

Personally, I prefer other tools because I am not a huge fan of using Ruby. Chef recipes are written in Ruby. Luck
for us they are not that complicated. Let’s take a look.

Create a Docker Cookbook
In this section, we’re going to use our Chef Workstation to create a Docker installation workbook, upload it to our
Chef Infra Server, then add it to our Chef Noderun list, then execute the Chef Node run list.

SSH into your workstation

ssh root@workstation.chef.tryiac.com

Chapter 6: Chef - Configure Chef Node from your Chef Workstation / Let’s Get Practical

 | 123

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Create the docker_init Cookbook

Create the cookbook

cd ~/chef-repo/cookbooks

chef generate cookbook docker_init

Now we need to create our first configuration recipe. Each block here is called a resource docs and will help us
define how we want our environment.

To me, the fundamental recipe resource goes like this

execute ‘my_cmd_name’ do

 command ‘echo “hello world”’

end

Let’s break it down:
	● execute is a type of resource that allows us to run a command
	● my_cmd_name just gives this block a name we decide (this isn’t true for all resources)
	● do and end allow us to pass configuration between
	● command , in the execute resource command is a configuration option. In this case, command will run

this command within a node (assuming this recipe is in the run_list for that node).

Before we use this resource block, let’s think about what I want to do with raw shell commands:

sudo apt-get update

sudo apt-get install -y apt-transport-https ca-certificates curl software-properties-com-

mon

curl https://get.docker.com/ -o docker-bootstrap.sh

sudo sh docker-bootstrap.sh

The above script will install docker for us. Once it’s done, we can run docker ps and see that docker is running.

Let’s see what this looks like as a Chef Recipe:

sudo nano ~/chef-repo/cookbooks/docker_init/recipes/default.rb

Chapter 6: Chef - Let’s Get Practical

https://docs.chef.io/resource/
https://docs.chef.io/resources/execute/

 | 124

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

apt_update ‘Run apt-update’ do

 frequency 86400

end

package ‘apt-transport-https’

package ‘ca-certificates’

package ‘software-properties-common’

package ‘Install Curl’ do

 package_name “curl”

 action :install

end

execute ‘Download Docker Bootstrap Script’ do

 command ‘curl https://get.docker.com/ -o docker-bootstrap.sh’

end

execute ‘Run Docker Bootstrap Script’ do

 command ‘sudo sh docker-bootstrap.sh’

end

service ‘docker’ do

 action [:start, :enable]

end

Let’s beak this down:
	● apt_update is a built-in resource since it’s required so often `apt_update` docs
	● package ‘apt-transport-https` is a way to ensure this package is installed. This is the shorthand way to

write it. `package` docs
	● package ‘Install Curl’ do... this version is the longhand way to write how to install a package.
	● execute ‘Download Docker Bootstrap Script’ execute the command to download the needed script `exe-

cute` docs
	● execute ‘Run Docker Bootstrap Script’ this will run downloaded script
	● service ‘docker’ this just ensures that our docker service is running and is enabled. service docs

We’ll do this again in a future section but here’s how we would implement this cookbook:

knife cookbook upload docker_init

Chapter 6: Chef - Let’s Get Practical

https://docs.chef.io/resources/apt_update/
https://docs.chef.io/resources/package/
https://docs.chef.io/resources/execute/
https://docs.chef.io/resources/execute/
https://docs.chef.io/resources/service/

 | 125

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now let’s add this to our run list:

knife node run_list add node1.chef.tryiac.com ‘recipe[docker_init]’

Now let’s execute our run_list:

sudo knife ssh ‘name:node1.chef.tryiac.com’ ‘sudo chef-client’

Create the webapp Cookbook
For the webapp we’re going to use the public repository for the IaC Python FastAPI App. As you can see in the
repo, the app has a Dockerfile already.

Since this Dockerfile exists, here’s the raw scripting I need to do:

sudo apt-get update && sudo apt-get install -y git

mkdir -p /var/www/app/

cd /var/www/app/

git clone http://github.com/codingforentrepreneurs/iac-python.git .

docker build -t py_web_app -f DockerFile .

The next step in this script would be to use docker run . Before I do, I want to implement a condition that checks
if any docker container is running with:

if [“$(docker ps -q)”]; then

 docker stop $(docker ps -a -q)

 docker rm $(docker ps -a -q)

fi

The reason I do this is to shutdown and remove any background services that may be running.
Now, let’s run our service:

docker run --restart always -e PORT=8001 -p 80:8001 -d py_web_app

Chapter 6: Chef - Let’s Get Practical

https://github.com/codingforentrepreneurs/iac-python
https://github.com/codingforentrepreneurs/iac-python
https://github.com/codingforentrepreneurs/iac-python

 | 126

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s break down this docker command:
	● docker run will run a container, we could do docker run my_container_tag but we need more configura-

tion
	● --restart always is a configuration item that will cause this container to start running again if the Chef Node

restarts (or the container fails for some reason).
	● -e PORT=8001 This adds an environment variable PORT set to 8001 . In this project, that environment

variable is where the web server (via gunicorn) will run on within docker.
	● -p 80:8001 this maps the external port 80 so that our node’s IP address can be mapped to port the run-

ning docker container port 8001.
	● -d this means run this container in detached mode. This is very important especially when running in a

Chef Node (or IaC) environment.

Example Script

sudo apt-get update && sudo apt-get install -y git

mkdir -p /var/www/app/

cd /var/www/app/

git clone http://github.com/codingforentrepreneurs/iac-python.git .

docker build -t py_web_app -f DockerFile .

if [“$(docker ps -q)”]; then

 docker stop $(docker ps -a -q)

 docker rm $(docker ps -a -q)

fi

docker run --restart always -e PORT=8001 -p 80:8001 -d py_web_app

SSH into your workstation

ssh root@workstation.chef.tryiac.com

Create webapp cookbook

cd ~/chef-repo/cookbooks

chef generate cookbook webapp

Update the default recipe on this cookbook:

sudo nano ~/chef-repo/cookbooks/webapp/recipes/default.rb

Chapter 6: Chef - Let’s Get Practical

 | 127

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Then add in:

apt_update

package “git”

directory ‘Create Project Directory’ do

 owner ‘root’

 group ‘root’

 path ‘/var/www/app/’

 recursive true

 mode ‘0755’

 action :create

end

git “Sync Git Repository” do

 repository “git://github.com/codingforentrepreneurs/iac-python.git”

 destination “/var/www/app”

 checkout_branch “main”

 action :sync

end

execute “Build App via Docker” do

 command “docker build -t py_app -f Dockerfile .”

 cwd “/var/www/app/”

 live_stream true

end

bash ‘Docker stop & Remove’ do

 code <<-EOH

 if [“$(docker ps -q)”]; then

 docker stop $(docker ps -a -q)

 docker rm $(docker ps -a -q)

 fi

 EOH

end

execute “Run App in Background” do

 command “docker run --restart always -p 80:8001 -e PORT=8001 -d py_app”

end

Chapter 6: Chef - Let’s Get Practical

 | 128

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s break this down
	● apt_update & package “git” we saw these both in the docker_init cookbook
	● directory this is a nice resource to ensure a directory exists and has the right permissions (`directory`

docs)
	● git “Sync Git Repository” this is a built-in resource that makes syncing our github repo easy. Using action

:sync means it will always replace the current code with what is in the repo (ignoring Chef Node changes)
(`git` docs)

	● execute “Build App via Docker” The new parts are cwd and live_stream . cwd means what directory to
run this command on. We set this directory in the git “Sync” portion. live_stream means the output of
this command will be shown. (`execute` docs)

	● bash ‘Docker stop & Remove’ this block allows us to run a few lines of commands. It’s true we could tech-
nically put all commands in here, it’s not good practice. (`bash` docs)

	● execute “Run App in Background” final execution command to run our app.

Run git commit
When we created the chef-repo , we also initialized a git repositiory for version control. Whenever you make
changes, you should consider running a git commit like:

cd ~/chef-repo

git add --all

git commit -m “Added docker_init and webapp cookbooks”

What’s more is you may want to add the entire chef-repo into a GitHub or GitLab account. That’s out side the
context of the scope of this book but it’s something worth doing.

Docker - Pros & Cons in our Recipes
Docker is a great way to run applications since it’s so flexible. This flexibilty comes at a cost. In our case, we have
several pros and cons (as also mentioned in our Ansible section in relation to building docker containers on any
given Chef node.

Pros
	● Less complexity
	● The build happens on the same machine as the run ensuring the built image will almost certainly run
	● Less dependence on third party services to build the image.
	● Less dependence on third party services to store/host the built image.

Cons
	● Takes a long time; not only our machines not optimize for building images but we build n number of imag-

es for n number of web servers (ugh this is not great)
	● Pulls resources away from currently running application servers. (docker build is not trivial on resources)
	● As you add more features to the web app (our python app), the likelihood of copying files that should

remain hidden grows significantly.
	● Does not account for best practices for building docker images (or CI/CD pipelines)

Chapter 6: Chef - Let’s Get Practical / Docker - Pros & Cons in our Recipes

https://docs.chef.io/resources/directory/
https://docs.chef.io/resources/directory/
https://docs.chef.io/resources/git/
https://docs.chef.io/resources/execute/
https://docs.chef.io/resources/bash/
http://./05-ansible

 | 129

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

In the long run, I would prefer to build my docker containers using CI/CD tools like Github Actions or Gitlab CI/CD
then host my container images on either a private docker container host on Linode or utilizing Docker’s official
hub.docker.com.

In the short run, I think using recipes (as well as docker) in this way highlight some of the great things that Chef
has to offer. Let’s go ahead and update our node(s) now to see if our work paid off.

Update Nodes
Whenever we make changes to our cookbooks and the respective recipes, we should be updating the Chef Infra
Server with these changes.

On our Chef Workstation we should now have two cookbooks:
	● ~/chef-repo/cookbooks/docker_init
	● ~/chef-repo/cookbooks/webapp

And 2 corresponding recipes:
	● ~/chef-repo/cookbooks/docker_init/recipes/default.rb
	● ~/chef-repo/cookbooks/webapp/recipes/default.rb

Upload Cookbooks
Before we update our nodes, we need to ensure our cookbooks are uploaded to our _Chef Infra Server_:

Enter your workstation (if you haven’t already) with:

ssh root@workstation.chef.tryiac.com

Now

cd ~/chef-repo

knife cookbook upload docker_init

knife cookbook upload webapp

Uploading your workbooks is common. You should also consider updating the metadata.rb within the cook-
book to manage the meta data for this cookbook (such as Version and the maintainer email and so on).

Add Recipes to 'run_list'
Our run_list works based on cookbooks that exist on our Chef Infra Server regardless of what’s on our Chef Work-
station

Chapter 6: Chef - Docker - Pros & Cons in our Recipes / Update Nodes

 | 130

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

knife node run_list add node1.chef.tryiac.com “recipe[docker_init]”

knife node run_list add node1.chef.tryiac.com “recipe[webapp]”

Reminder: removing recipes from your node(s) you simply do: knife node run_list remove node1.chef.tryiac.
com “recipe[webapp]”

Once you run the above commands, you should see:

node1.chef.tryiac.com:

 run_list:

 recipe[docker_init]

 recipe[webapp]

Execute chef-client on our Chef Node(s)
chef-client will run the recipes within the run_list in our node(s).

From the Chef Workstation:

knife ssh ‘name:*’ ‘sudo chef-client’

From the Chef Node:

ssh root@node1.chef.tryiac.com

sudo chef-client

This execution will take a good amount of time due to the fact that we’re building a Docker container in the
webapp recipe.

Chapter 6: Chef - Update Nodes

 | 131

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Review our Node
In a web browser, open up http://node1.chef.tryiac.com or whatever your domain is. What you should see is
something like:

Chef Supermarket
Above we created our own cookbooks and recipes. Chef Supermarket allows you to use what other people have
made. This can certainly unlock your projects in a big way as well as learn how to improve your own cookbooks.
Let’s look at a simple example:

knife cookbook site search cron-delvalidate

This example is also used on the the very help how-to Chef guide right on Linode.

After we search for a cookbook, we can download it to our workstation: (I assume you ran a git commit above).

cd ~/chef-repo/cookbooks

knife cookbook site download cron-delvalidate

After this command runs, you will see a new folder called cron-devalidate . This contains the following recipe:

~/chef-repo/cookbooks/cron-devalidate/recipes/default.rb

#

Cookbook Name:: cron-delvalidate

Recipe:: Chef-Client Cron & Delete Validation.pem

#

#

cron “clientrun” do

 minute ‘0’

 hour ‘*/1’

Chapter 6: Chef - Review our Node / Chef Supermarket

http://node1.chef.tryiac.com
https://www.linode.com/docs/guides/install-a-chef-server-workstation-on-ubuntu-18-04/

 | 132

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 command “/usr/bin/chef-client”

 action :create

end

file “/etc/chef/validation.pem” do

 action :delete

end

Notice there is a cron resource? Cron is a way to run tasks on a schedule. The cool think about this one is it will
run ”/usr/bin/chef-client” every 30 minutes (that’s what the hour ‘*/1 does).

What’s more, when chef-client is run on our node, our entire run_list is also executed. This means our webapp
cookbook/recipe can be ran every 30 minutes. In other words, our webapp would be updated every 30 minutes
no matter what.

How cool is that?

Let’s upload this cookbook:

knife cookbook upload cron-delvalidate

If you want to add this, update your node run_list

knife node run_list add node1 ‘recipe[cron-delvalidate]’

Another way to search the Chef Supermarket is to go to https://supermarket.chef.io/.

I did a quick search for docker and found https://supermarket.chef.io/cookbooks/docker. This cookbook gives
me a lot of options to use with Docker; many of which this project does not need. That said, it would be an excel-
lent cookbook to explore to see if we can get rid of our docker_init cookbook all together -- I’d say it’s not only
possible but likely. That’s a challenge I’ll leave up to you.

Chapter 6: Chef - Chef Supermarket

https://supermarket.chef.io/
https://supermarket.chef.io/cookbooks/docker

 | 133

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Next Steps
Now that you have Chef fully configured, I suggest you try to do the following:

	● Provision 3 more Chef Nodes.
	● Implement 2 additional nodes using our Docker-based Python project.
	● For 1 node, using docker run --restart always -p 80:80 -d nginx instead of the webapps one.

Clean Up
Be sure to shutdown or remove instance(s) that you have provisioned on Linode if you do not intend to use Chef
going forward as they will accrue expenses for as long as you run them.

Chapter 6: Chef - Next Steps / Clean Up

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 | 135

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 7: Puppet Bolt - Provisions Linode Instances / Install Puppet on your Workstation

Chapter 7

Puppet Bolt

Provision Linode Instances
To get started we need a minimum of 3 Linode Instances provisioned. Login to the console and provision using
the following settings:

Puppet Workstation
	● Image: Ubuntu 20.04 (recommended)
	● Min Plan: Linode 1GB
	● Example IP Address: 45.79.174.248

Puppet Node
	● Count: 2
	● Image: Ubuntu 20.04 (recommended)
	● Min Plan: Linode 1GB
	● Example IP Addresses: 45.79.174.212, 45.79.174.219

While you provision these instances consider:
	● Ading your SSH Keys to each instance
	● Generate User passwords with Python

Install Puppet on your Workstation
Install on Ubuntu ref

Install Puppet Bold on Ubuntu 20.04 (default choice)

Login to your workstation machine

ssh root@45.79.174.248

Declare BOLT version

export BOLT_VERSION=”focal”

https://cloud.linode.com/
http://./appendix-1-ssh-keys-in-console
http://./appendix-4-create-a-password-with-python
https://puppet.com/docs/bolt/latest/bolt_installing.html#install-bolt-on-ubuntu

 | 136

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Run bolt installs

wget “https://apt.puppet.com/puppet-tools-release-$BOLT_VERSION.deb”

sudo dpkg -i puppet-tools-release-*.deb

sudo apt-get update

sudo apt-get install puppet-bolt

rm puppet-tools-release-*.deb

Verify install:

bolt --version

At the time of this writing, mine responds with:

3.21.0

The command line tool bolt is the agentless version of Puppet. The workspace we have here is optional but it’s
recommended as you learn how to use Puppet Bolt before you move into using tools like Github Actions or Gitlab
CI/CD.

Other linux system installs (optional)
If you decided to not use Ubuntu 20.04 then you can use the following or review the installation docs:

For Ubuntu 16.04 :

export BOLT_VERSION=”xenial”

For Ubuntu 18.04:

export BOLT_VERSION=”bionic”

For Debian 9:

export BOLT_VERSION=”stretch”

Chapter 7: Puppet Bolt - Install Puppet on your Workstation

https://puppet.com/docs/bolt/latest/bolt_installing.html

 | 137

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

For Debian 10:

export BOLT_VERSION=”buster”

For Debian 11:

export BOLT_VERSION=”bullseye”

After that, run:

wget “https://apt.puppet.com/puppet-tools-release-$BOLT_VERSION.deb”

sudo dpkg -i puppet-tools-release-*.deb

sudo apt-get update

sudo apt-get install puppet-bolt

rm puppet-tools-release-*.deb

Create Puppet Bolt Project

ssh root@45.79.174.248

Reminder that 45.79.174.248 is the IP Address of our workstation. Update yours as needed.

mkdir -p ~/iac-puppet

cd ~/iac-puppet

bolt project init iac_puppet

Chapter 7: Puppet Bolt - Install Puppet on your Workstation / Create Puppet Bolt Project

 | 138

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The above will generate the following:

iac-puppet/

 .gitignore

 bolt-project.yaml

 inventory.yaml

It’s great that .gitignore is added by default so we can utilize git (version control) from the start of using our
project.

Add our Inventory
inventory.yaml

groups:

 - name: webapps

 targets:

 - 45.79.174.212

 - 45.79.174.219

 config:

 transport: ssh

 ssh:

 user: root

 password: Er-WROP0OdRa0Aa23ZNJXRPW3t3hLdHA7oYsHqIaqB8

 host-key-check: false

Let’s break this down:
	● groups : we can leverage multiple groups of instances using puppet, for this chapter, we’ll just use 1 group.
	● name : this is the name we’ll use to reference this group
	● targets this is a list of IP addresses we provisioned for our Puppet Node s
	● config:transport:ssh This means that puppet bolt will use an ssh connection (secure shell) to handle all

configruation.
	● configuration:ssh:user:root this is the default user when you provision an Linode instance
	● configuration:ssh:user:password this is the password you set while provisioning a Linode instance.
	● host-key-check: false this will not verify your SSH pub key against the allowed_hosts file.

Now that we have inventory, let’s see how we can use it with a simple command:

bolt command run “echo ‘Hello World’” --targets webapps

Chapter 7: Puppet Bolt - Create Puppet Bolt Project / Add our Inventory

 | 139

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Your result should be something like:

Started on 45.79.174.212...

Started on 45.79.174.219...

Finished on 45.79.174.212:

 Hello World

Finished on 45.79.174.219:

 Hello World

Successful on 2 targets: 45.79.174.212,45.79.174.219

Ran on 2 targets in 2.24 sec

Pretty neat huh?

For those of you that know SSH well, you probably relealise this is almost like running:

ssh root@45.79.174.212 echo ‘Hello World’

ssh root@45.79.174.219 echo ‘Hello World’

But with just 1 command. It’s pretty neat huh?

New SSH Keys
Hard coding passwords isn’t a great idea. Let’s change how bolt accesses each instance by generating SSH keys.

On your Bolt manager, run:

ssh-keygen

Accept all the defaults for example:

root@localhost:~/iac-puppet# ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa

Your public key has been saved in /root/.ssh/id_rsa.pub

The key fingerprint is:

Chapter 7: Puppet Bolt - Add our Inventory / New SSH Keys

 | 140

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

SHA256:6I+z8yVN71MNlnItCsP7S7417YEL5OfXv/sVIXav+O0 root@localhost

The key’s randomart image is:

+---[RSA 3072]----+

| |

| |

| . o = |

| . + o O +|

| . S .= = =.|

| . o+...ooo|

| . . o++++.+|

| oo o +*o.=+|

| o=o =*o+E|

+----[SHA256]-----+

Now your ssh public key is located at ~/.ssh/id_rsa.pub . We want to copy the value of this public key to the
~/.ssh/authorized_keys on each one of our instances.

First let’s set a variable on our workstation:

export SSH_PUB_KEY=$(cat ~/.ssh/id_rsa.pub)

This command will store the value of the command cat ~/.ssh/id_rsa.pub to the variable SSH_PUB_KEY.

Now let’s ensure that ~/.ssh exists on our webapp instances:

bolt command run “mkdir -p ~/.ssh” --targets webapps

Now let’s add our SSH_PUB_KEY to each instance at ~/.ssh/authorized_keys

bolt command run “echo $SSH_PUB_KEY >> ~/.ssh/authorized_keys” --targets webapps

Chapter 7: Puppet Bolt - New SSH Keys

 | 141

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Update Inventory
Now that each instance has our workstation’s public SSH key, let’s update our inventory.yaml file.

inventory.yaml

groups:

 - name: webapps

 targets:

 - 45.79.16.224

 - 66.228.52.37

 config:

 transport: ssh

 ssh:

 user: root

 private-key: ~/.ssh/id_rsa

 host-key-check: false

The private-key / public-key authentication method for SSH is much preferred as it’s more secure and also easi-
er to move this project to different workspaces (or into Github Actions or Gitlab CI/CD).

Verifying Hosts (optional)
Above, we see host-key-check: false. This is so we don’t see an error when we try to use bolt. Why would we see
this error? We haven’t approved the target hosts yet. Now that we have used bolt to update our ~/.ssh/autho-
rized_keys , we can easily verify our hosts:

ssh root@45.79.16.224

Accept the fingerprint

ssh root@66.228.52.37

Accept the fingerprint

Note: you can remove host-key-check: false if you’d like and repeat this process for future hosts. The reason this
step is optional is because removing host-key-check: false can cause headaches when you add new host targets
in the future.

Chapter 7: Puppet Bolt - New SSH Keys / Update Inventory

 | 142

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Your First Bolt Module
Modules are a collection of steps that we need our group instances to run. These steps run in order and to the
targets we designate (targets are typically groups that are named in inventory.yaml)

For our first module, we’ll install nginx to our webapps group.

ssh root@workstation_ip

Replace workstation_ip with the IP address for your workstation. Mine is 45.79.174.248

cd ~/iac-puppet

mkdir -p modules/nginx/plans

touch modules/nginx/plans/install.yaml

Update modules/nginx/plans/install.yaml to:

parameters:

 targets:

 type: TargetSpec

steps:

 - name: update_apt

 command: sudo apt-get update

 targets: $targets

 - name: install_nginx

 task: package

 targets: $targets

 parameters:

 action: install

 name: nginx

 description: “Install Nginx”

 - resources:

 - type: service

 title: nginx

 parameters:

 ensure: running

 targets: $targets

 description: “Set up nginx on the webservers”

Chapter 7: Puppet Bolt - Your First Bolt Module

 | 143

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s break this down:
	● The format goes modules/<your-module-name>/plans/<your-plan-name>.yaml , this is required as we’ll

see shortly
	● parameters:targets:type:TargetSpec means that we have to include a target (or targets) when we run this

plan
	● In steps we have a series of items we need bolt to execute. These are executed in order.
	● command this is how we run an arbitary command much like bolt command run “echo ‘Hello World’”

--targets webapps
	● targets: $targets is a reference to the parameters targets
	● task: package is a built-in method for installing apt packages (similar to the command sudo apt install

nginx)
	● resources:task:type:service : this block will ensure that nginx is running (similar to the command sudo

service nginx start)

Run our module
Bolt plan run NGINX::install -t webapps

Let’s break this command down:
	● nginx::install maps to modules/nginx/plans/install.yaml
	● nginx is the name of the module
	● install is the name of the plan
	● The directory plans is inferred
	● -t webapps declares the targets spec which is inventory of the webapps group.

After your run the above command you should see something like:

Starting: plan nginx::install

Starting: command ‘sudo apt-get update’ on 45.79.174.212, 45.79.174.219

Finished: command ‘sudo apt-get update’ with 0 failures in 17.43 sec

Starting: Install Nginx on 45.79.174.212, 45.79.174.219

Finished: Install Nginx with 0 failures in 51.45 sec

Starting: install puppet and gather facts on 45.79.174.212, 45.79.174.219

Finished: install puppet and gather facts with 0 failures in 27.44 sec

Starting: Set up nginx on the webservers on 45.79.174.212, 45.79.174.219

Finished: Set up nginx on the webservers with 0 failures in 13.72 sec

Finished: plan nginx::install in 1 min, 50 sec

Plan completed successfully with no result

Remove NGINX
The above example was meant to show how simple and effective Puppet is and can be. We do not need NGINX
going forward, so now we’ll create a plan to purge it.

Chapter 7: Puppet Bolt - Your First Bolt Module

 | 144

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Create modules/nginx/plans/purge.yaml :

sudo nano modules/nginx/plans/purge.yaml

Add in:

parameters:

 targets:

 type: TargetSpec

steps:

 - resources:

 - type: service

 title: nginx

 parameters:

 ensure: stopped

 - package: nginx

 parameters:

 ensure: absent

 targets: $targets

 description: “Stop nginx service and remove it.”

Then run the plan:

bolt plan run nginx::purge -t webapps

Another way to purge would be with a little more of a manual approach.

Create modules/nginx/plans/purge_alt.yaml:

sudo nano modules/nginx/plans/purge_alt.yaml

Add in:

yaml

parameters:

 targets:

Chapter 7: Puppet Bolt - Your First Bolt Module

 | 145

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 type: TargetSpec

steps:

 - name: stop_nginx

 command: sudo systemctl stop nginx

 targets: $targets

 - name: purge_nginx

 task: package

 targets: $targets

 parameters:

 action: uninstall

 name: nginx

 description: “Stop & remove nginx the hard Way”

Run this with:

bolt plan run nginx::purge-alt -t webapps

Getting the hang of it? Let’s get Docker setup for us.

Docker Module
Now we’re going to create our Docker module by making use of Bolt’s files and plans.

Start by creating the following folders:

mkdir -p ~/iac-puppet/modules/docker/files

mkdir -p ~/iac-puppet/modules/docker/plans

In modules/docker/files , we’re going to have the following scripts:

	● docker_init.sh
	● docker_build.sh
	● dokcer_run.sh

If you want to learn more about Bash script arguments, review Appendix I

Chapter 7: Puppet Bolt - Your First Bolt Module / Docker Module

 | 146

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Install Docker Script
Docker has an official install script on https://get.docker.com that makes is very convenient to install the latest
version of docker.

We only want to download this script if the docker command does not exist on our instance.

Create modules/docker/files/docker_init.sh:

sudo nano ~/iac-puppet/modules/docker/files/docker_init.sh

Add in:

#!/bin/bash

if [~ “$(command -v docker)”]; then

 curl https://get.docker.com -o /tmp/get-docker.sh

 sudo sh /tmp/get-docker.sh

fi

Again, to manually run this we would use:

cd ~/iac-puppet/modules/docker/files/

sudo sh docker_init.sh

Docker Build Container Script
This script will build our Docker container on our instances. Naturally, it requires that we run git_clone_pull.sh
and docker_init.sh prior to running this one.

Create modules/docker/files/docker_build.sh:

sudo nano ~/iac-puppet/modules/docker/files/docker_build.sh

Chapter 7: Puppet Bolt - Docker Module

https://get.docker.com

 | 147

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Add in:

#!/bin/bash

DEST=${1:-”/var/www/proj”}

TAG=${2:-”proj”}

mkdir -p $DEST

cd $DEST

docker build -t $TAG -f Dockerfile .

This script will attempt to build our Docker container based on two positional arguments:
	● Positional argument 1 (ie $1) mapped to DEST (defaults to /var/www/proj)
	● Positional argument 2 (ie $2) mapped to TAG (defaults to proj)

Again, to manually run this we would use:

cd ~/iac-puppet/modules/docker/files/

sudo sh docker_build.sh /var/www/proj app

Docker Build - Pros & Cons within Modules
Docker is a great way to run applications since it’s so flexible. This flexibility comes at a cost. In our case, we have
several pros and cons, in relation to building Docker containers on any given Puppet node.

Pros
	● Less complexity
	● The build happens on the same machine as the run ensuring the built image will almost certainly run
	● Less dependence on third party services to build the image.
	● Less dependence on third party services to store/host the built image.

Cons
	● Takes a long time; not only our machines not optimize for building images but we build n number of imag-

es for n number of web servers (ugh this is not great)
	● Pulls resources away from currently running application servers. (docker build is not trivial on resources)
	● As you add more features to the web app (our python app), the likelihood of copying files that should

remain hidden grows significantly.
	● Does not account for best practices for building docker images (or CI/CD pipelines)

In the long run, I would prefer to build my docker containers using CI/CD tools like Github Actions or Gitlab CI/CD
then host my container images on either a private docker container host on Linode or utilizing Docker’s official
hub.docker.com.

Chapter 7: Puppet Bolt - Docker Module

 | 148

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

In the short run, I think using recipes (as well as Docker) in this way highlight some of the great things that Chef
has to offer. Let’s go ahead and update our node(s) now to see if our work paid off.

Docker Run Container Script
Now it’s finally time to create our run script. This is the last script we need in order to run our container. It’s true
that we could combine each one of these scripts but I prefer to have them concise and separate so they are easier
to test and to update.

Create modules/docker/files/docker_run.sh:

sudo nano ~/iac-puppet/modules/docker/files/docker_run.sh

Add in:

#!/bin/bash

TAG=${1:-”proj”}

if [“$(docker ps -aq)”]; then

 docker stop $(docker ps -aq)

 docker rm $(docker ps -aq)

fi

docker run --restart always -p 80:8001 -e PORT=8001 -d $TAG

This script will:
	● Stop all other running containers
	● Remove all previous running containers
	● Run our container based on the tag argument

Inherent in this script is downtime for our app. The downtime should be minimal but it’s definitely going to
happen because we stop old running containers and then restart. In my tests, the downtime can be as small as 2
seconds but as long as 2 minutes.

This downtime is acceptable for a couple reasons:
	● We’re learning
	● Most applications can tolerate a certain level of downtime to a point
	● If we implement a NodeBalancer on Linode, we can separate our inventory into two groups to (such as

webapps-1 and webapps-2) and then run our bolt plan run for each group that needs to be upgraded.

Let’s break down the docker run command:
	● docker run is the default command to run a docker container
	● --restart always is ideal so that our docker container runs if the instance restarts (for some reason)

Chapter 7: Puppet Bolt - Docker Module

 | 149

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● -e PORT=8001 this sets the environment variable PORT to 8001 so that our Python web app within our
Docker container runs at port 8001.

	● -p 80:8001 This flag maps port 80 on our linode instance (aka virtual machine) to the PORT 8001 within
our Docker container (notice how it matches exactly to the environment variables)

	● -d runs this docker container in detach mode which is background mode; it essentially turns this Docker
application into a service that will run in the background and restart always (thanks to the --restart always
flag).

	● $TAG this will help us run a specific docker image that we built in a previous script.

Docker Install Plan

Create modules/docker/plans/install.yaml:

sudo nano ~/iac-puppet/modules/docker/plans/install.yaml

Add in:

parameters:

 targets:

 type: TargetSpec

steps:

 - name: update_apt

 command: sudo apt-get update

 targets: $targets

 - name: run_docker_init

 targets: $targets

 script: docker/docker_init.sh

The only real new thing in this plan is script ; use the format <module_name>/<file_name> based on ~/<proj-
ect_name>/modules/<module_name>/files/<file_name> . Bolt is smart enough to find the docker_init.sh file
within the modules/docker/files/ directory. Pretty cool right?

Now we need to implement this plan within another plan. Let’s have a look.

Chapter 7: Puppet Bolt - Docker Module

 | 150

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Creating our the pyapp Module
This module is made to implement our Docker-based python web application by means of Git.

Let’s create our module directories:

mkdir -p modules/pyapp/files

mkdir -p modules/pyapp/plans

In modules/pyapp/files we’re going to add the following scripts:

	● git_clone_pull.sh

First, modules/pyapp/files/git_clone_pull.sh:

This script is designed to clone or pull a repo to a specific destination. It can be very useful in future projects as
well.

sudo nano ~/iac-puppet/modules/pyapp/files/git_clone_pull.sh

Add in:

#!/bin/bash

if [$# != 2]; then

 echo “You must use 2 arguments for DEST & REPO”

 exit 2

fi

export DEST=$1

export REPO=$2

if [-z “$DEST”]; then

 echo “Destination dir missing. Please add it as the first argument”

 exit 2

fi

if [-z “$REPO”]; then

 echo “Repo missing. Please add it as the second argument”

 exit 2

fi

Chapter 7: Puppet Bolt - Creating our the pyapp Module

 | 151

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

mkdir -p $DEST

cd $DEST

if [-d .git]; then

 echo “Pulling repo in $DEST”

 git reset --hard && git pull origin main

else

 echo “Cloning $REPO to $DEST”

 git clone $REPO .

fi

To manually run this script on a Linux machine, you’d do something like:

cd ~/iac-puppet/modules/pyapp/files/

sudo sh git_clone_pull.sh /var/www/proj https://github.com/codingforentrepreneurs/iac-py-

thon

Or better yet, using variables like:

cd ~/iac-puppet/modules//files/

export DEST_FOLDER=/var/www/proj

export GIT_REPO=https://github.com/codingforentrepreneurs/iac-python

sudo sh git_clone_pull.sh $DEST_FOLDER $GIT_REPO

Create our pyapp plan:

In modules/pyapp/plans we’re going to add the following plans:
	● install.yaml
	● run.yaml

First, let’s start with ~/iac-puppet/modules/pyapp/plans/install.yaml:

sudo nano ~/iac-puppet/modules/pyapp/plans/install.yaml

Chapter 7: Puppet Bolt - Creating our the pyapp Module

 | 152

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Add in:

parameters:

 targets:

 type: TargetSpec

 repo:

 type: String

 default: https://github.com/codingforentrepreneurs/iac-python

 dest:

 type: String

 default: /var/www/app/

 tag:

 type: String

 default: pyapp

steps:

 - name: install_docker

 plan: docker::install

 targets: $targets

 - name: install_git

 task: package

 targets: $targets

 parameters:

 action: install

 name: git

 - name: make_dest_dir

 command: mkdir -p /var/www/app/

 targets: $targets

 - name: git_clone_pull

 targets: $targets

 script: pyapp/git_clone_pull.sh

 arguments:

 - $dest

 - $repo

 - name: docker_build_container

 targets: $targets

 script: docker/docker_build.sh

 arguments:

 - $dest

 - $tag

 - name: docker_run_webapps

 targets: $targets

 script: docker/docker_run.sh

 arguments:

 - $tag

Chapter 7: Puppet Bolt - Creating our the pyapp Module

 | 153

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Let’s break this one down:
	● parameters listed repo , dest , and tag can be used within our steps just like we did with targets . The

primary difference here is we set defaults and the type is String for each one.
	● plan: docker::install Here’s one of the best features of bolt - calling other modules within modules. This

step will execute the modules/docker/plans/install.yaml plan just as if we were going to run bolt plan run
docker::install -t webapps

	● script: pyapp/git_clone_pull.sh just like we did in the Docker portion, we can execute a local script
right here. In this case, we use the parameters dest and repo based on the positional arguments that
git_clone_pull.sh requires. (this step maps to sh git_clone_pull.sh /var/www/app/ https://github.com/
codingforentrepreneurs/iac-python)

	● script: docker/docker_build.sh this continues with the docker module script docker_build.sh along with
our dest and tag parameters (this step maps to sh docker_build.sh /var/www/app/ pyapp)

	● script: docker/docker_run.sh yet another Docker module script. (This step maps to sh docker_run.sh
pyapp)

Now, we can finally run these modules with:

bolt plan run pyapp::install -t webapps

Here’s the result:

Starting: plan pyapp::install

Starting: plan docker::install

Starting: command ‘sudo apt-get update’ on 45.79.174.212, 45.79.174.219

Finished: command ‘sudo apt-get update’ with 0 failures in 4.05 sec

Starting: script /root/iac-puppet/modules/docker/files/docker_init.sh on 45.79.174.212,

45.79.174.219

Finished: script /root/iac-puppet/modules/docker/files/docker_init.sh with 0 failures in

1.03 sec

Finished: plan docker::install in 5.12 sec

Starting: task package on 45.79.174.212, 45.79.174.219

Finished: task package with 0 failures in 2.51 sec

Starting: command ‘mkdir -p /var/www/app/’ on 45.79.174.212, 45.79.174.219

Finished: command ‘mkdir -p /var/www/app/’ with 0 failures in 0.81 sec

Starting: script /root/iac-puppet/modules/pyapp/files/git_clone_pull.sh on 45.79.174.212,

45.79.174.219

Finished: script /root/iac-puppet/modules/pyapp/files/git_clone_pull.sh with 0 failures in

1.3 sec

Starting: script /root/iac-puppet/modules/docker/files/docker_build.sh on 45.79.174.212,

45.79.174.219

Finished: script /root/iac-puppet/modules/docker/files/docker_build.sh with 0 failures in

74.55 sec

Chapter 7: Puppet Bolt - Creating our the pyapp Module

 | 154

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Starting: script /root/iac-puppet/modules/docker/files/docker_run.sh on 45.79.174.212,

45.79.174.219

Finished: script /root/iac-puppet/modules/docker/files/docker_run.sh with 0 failures in

2.01 sec

Finished: plan pyapp::install in 1 min, 26 sec

Plan completed successfully with no result

Easy enough eh?

Let’s take a look at our IP address in our browser:

Clean Up
Be sure to shutdown or remove instance(s) that you have provisioned on Linode if you do not intend to use your
Puppet workstation and/or nodes going forward as they will accrue expenses for as long as you run them.

Chapter 7: Puppet Bolt - Creating our the pyapp Module / Clean Up

 | 156

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Chapter 8

Salt & the SaltStack
In this one, we’re going to examine how to automate configuration using Salt to deploy a Python app that lever-
ages a Docker container runtime.

Provision Linode Instances
To get started we need a minimum of 3 Linode Instances provisioned. Login to the console and provision using
the following settings:

Salt Master
	● Image: Ubuntu 20.04 (recommended)
	● Min Plan: Linode 1GB
	● Example IP Address: 45.79.174.248

Salt Minion
	● Count: 2
	● Image: Ubuntu 20.04 (recommended)
	● Min Plan: Linode 1GB
	● Example IP Addresses: 45.79.174.212 , 45.79.174.219

While you provision these instances consider:
	● Ading your SSH Keys to each instance
	● Generate User passwords with Python

Step 1: Create a Master Virtual Machine
Salt uses a single master machine to control minion machines. Each minion machine can perform different ac-
tions (such as being a web app server or a load balancer or a database server and so on).

The master will orchestrate all of the minion machines with various Salt commands (as we’ll see).

1. Provision & SSH
Login to Linode, provision your master virtual machine. After complete, SSH in such as:

ssh root@yourmasterip

yourmasterip should be the IP address that linode gives you when your provision a virtual machine.

Chapter 8: Salt & the SaltStack - Provision Linode Instances

https://cloud.linode.com/
http://./appendix-1-ssh-keys-in-console
http://./appendix-4-create-a-password-with-python

 | 157

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

2. Change Hostname

We’re going to set our hostname to gru . This is an arbitrary name but since Gru is the master of all the Minions I
figured it’s silly enough to remember the concepts.

sudo hostnamectl set-hostname gru

An alternative method would be to change the value in /etc/hostname with sudo nano /etc/hostname

After you set your hostname be sure to change localhost to gru in /etc/hosts:

From

127.0.0.1 localhost

To

127.0.0.1 gru

Now reboot:

sudo reboot

After reboot finishes, login:

ssh root@yourmasterip

Verify hostname:

cat /etc/hostname

Chapter 8: Salt & the SaltStack - Provision Linode Instances

 | 158

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

or

echo $HOSTNAME

3: Install Salt via Boostrap Script

curl https://bootstrap.saltproject.io/ -o bootstrap_salt.sh

sudo sh bootstrap_salt.sh -M -N

	● -M creates the master
	● -N removes the master from being a minion

4. Verify Master is Running

sudo service salt-master status

You should see or something similar (with more data too):

salt-master.service - The Salt Master Server

 Loaded: loaded (/lib/systemd/system/salt-master.service; enabled; vendor preset: en-

abled)

 Active: active (running) since Wed 2021-10-13 15:17:12 UTC; 5min ago

Create Your First Minion Virtual Machine
Each minion will be controlled by the master (as stated above) but, when needed, we can login to an individual
minion to ensure the state has been applied correctly (more on state later). Minions having access to what their
state should be is a great feature of Salt.

1. Provision & SSH
Login to Linode, provision your master virtual machine. After complete, ssh in such as:

ssh root@your_minion_1_ip

your_minion_1_ip should be the IP address that linode gives you when your provision a virtual machine.

Chapter 8: Salt & the SaltStack - Provision Linode Instances / Create Your First Minion Virtual Machine

 | 159

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

2. Add Salt Master to your minion /etc/hosts file:

export SALT_MASTER_IP=yourmasterip

echo “$SALT_MASTER_IP salt” >> /etc/hosts

This results in something like:

echo “104.200.17.101 salt” >> /etc/hosts

Using salt as the master hostname is required in order for the minion to communicate with the master.

Now ping the master:

ping salt

Do you see 64 bytes from 104.200.17.101 included in the results? Good keep going.

3. Install Salt via Boostrap Script

curl https://bootstrap.saltproject.io/ -o bootstrap_salt.sh

sudo sh bootstrap_salt.sh

Notice that we do not add any parameters to our bootstrap_salt.sh as we did with the master.

4. (Optional) Create a Linode Image for the minion machine.
Since we’re going to be adding more than 1 minion to our stack, I want to make an image to shortcut the above 3
steps.

In a larger project, I would use terraform with salt to ensure this step is tracked through version control. To
keep things as simple as possible for the Salt section, we’re going to just use Linode images manually.

5. Change Minion Hostname
For each minion, it’s a good idea to have a unique hostname. For this one, we’ll use the hostname web1. Check
the reference above if you need alternative ways of setting the hostname.

sudo hostnamectl set-hostname web1

Chapter 8: Salt & the SaltStack - Create Your First Minion Virtual Machine

 | 160

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

After you set your hostname be sure to change localhost to web1 in /etc/hosts:

From

127.0.0.1 localhost

To

127.0.0.1 web1

Now reboot:

sudo reboot

After reboot finishes, login:

ssh root@your_minion_1_ip

Verify hostname:

cat /etc/hostname

or

echo $HOSTNAME

 6. Restart Minion

sudo service salt-minion restart

Chapter 8: Salt & the SaltStack - Create Your First Minion Virtual Machine

 | 161

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

7. Verify Minion is Running

sudo service salt-minion status

You should see or something similar (with more data too):

salt-minion.service - The Salt Minion

 Loaded: loaded (/lib/systemd/system/salt-minion.service; enabled; vendor preset: en-

abled)

 Active: active (running) since Tue 2021-10-12 04:53:41 UTC; 1 day 10h ago

8. Update Master Hosts:

SSH into Master (aka gru):

ssh root@yourmasterip

Update Master Hosts with your Minion’s hostname & IP:

export MINION_IP=45.33.31.220

export MINION_HOSTNAME=web1

echo “$MINION_IP $MINION_HOSTNAME” >> /etc/hosts

Is this step required for Salt to work? Absolutely not. This is a very nice convenience to keep our minion IP ad-
dresses in a common location (/etc/hosts) instead of having it in many different places.

9. Accept salt-key for minion in Master
Still in your Master (aka gru) we need to verify the minion is valid:

salt-key

Chapter 8: Salt & the SaltStack - Create Your First Minion Virtual Machine

 | 162

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The response should look like this:

Accepted Keys:

Denied Keys:

Unaccepted Keys:

web1

Rejected Keys:

Notice that web1 is currently in Unaccepted Keys . Let’s accept it as a minion:

salt-key --accept=web1

Are you seeing an IP address in these keys? That means the previous step was not setup correctly for this minion. Go
back and try again or even run sudo reboot on your master.

10. Test Total Installation

Again, in your Master. Let’s ping our minion(s):

salt “*” test.ping

Here’s what you should get back:

web1:

 True

The Basics of Managing State with Salt
Now that we have a master (gru) and a minion (web1) it’s time to start managing state. In this case, state means
the desired configuration for our minion virtual machine(s).

Like many Infrastructure as Code tools, Salt is declarative. This means we tell salt how we want our machine to
be, and it will do all the steps to make it that way. In other words, we do not care how Salt arrives at the destina-
tion we just care that it does. In contrast, writing a web application is usually imperative which means you decide
all the steps to arrive at a destination -- ie you care how it gets done each step of the way.

If you have been writing a bunch of imperative code (like Python, JavaScript, Ruby, etc), you might find declara-

Chapter 8: Salt & the SaltStack - Create Your First Minion Virtual Machine / The Basics of Managing State

 | 163

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

tive code a bit like magic or downright frustrating. I have experienced both of these feelings.
In this section, I’ll show you have to provision your single minion to run a single web application. It’s amazing
how easy it is.

First, we need to make a directory called /srv/salt on our master machine. This is the default name and loca-
tion for these state files (aka [file roots](https://docs.saltproject.io/en/latest/ref/configuration/master.html#-
file-roots)). It can be changed but we wont.

Let’s start with something that is super visual:

/srv/salt/nginx.sls

nginx:

 pkg.installed: []

 service.running:

 - require:

 - pkg: nginx

Each state file needs the extension sls but the file itself is a yaml file. To run this file, we have:

Now, let’s update our minion state:

salt “*” state.apply nginx

Let’s break down this command:
	● salt using the salt cli
	● ”*” means all minions (more on this later)
	● state.apply means we’re going to applying state
	● nginx refers directly to /srv/salt/nginx.sls.

After this command finishes, let’s see the state of the NGINX service:

salt “*” cmd.run “systemctl status nginx.service”

Let’s break this down:
	● salt using the salt cli
	● ”*” means all minions (more on this later)
	● cmd.run is how we can run any command on our minion
	● ”systemctl status nginx.service” is a simple command to see if the nginx service is running on our minion.

Chapter 8: Salt & the SaltStack - The Basics of Managing State with Salt

 | 164

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

You should be able to open your IP address in a browser too and see the NGINX working html page.
Let’s remove NGINX:

/srv/salt/nginx-remove.sls

nginx_service:

 service.dead:

 - name: nginx

nginx_removed:

 pkg.purged:

 - name: nginx

After you create that, run:

salt “*” state.apply nginx-remove

Better understanding state.apply
From above, if we changed /srv/salt/nginx.sls to /srv/salt/nginx-start.sls our command would be:

salt “*” state.apply nginx-start

If we wanted to just apply this to our 1 single minion we’d run:

salt “web1” state.apply nginx-start

If we wanted to just apply this to a few minions with a matching pattern we can:

salt “web[0-9]” state.apply nginx-start

In this case, the block [0-9] matches all numbers that are appended to web.

Chapter 8: Salt & the SaltStack - The Basics of Managing State with Salt

 | 165

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Docker & Salt
My favorite way to run any application in production is using Docker. The reason? If Docker is running, your app
will run. Period.

It’s true there may be exceptions to this but generally speaking, those exceptions are outliers and are often
solved by (1) spinning up a new virtual machine with more CPUS/RAM/Storage or (2) rebooting your virtual ma-
chine.

The other thing about using Docker is the best Dockerfile s will give us the exact commands we need to provi-
sion the non-Docker environment. In other words, Dockerfile s are recipes we can follow even if we don’t want
to use docker.

Let’s create a few files to get Docker working:

/srv/salt/docker/install.sls

docker_script:

 cmd.run:

 - name: curl https://get.docker.com/ -o docker.sh

 - cwd: /var/www

docker_install:

 cmd.run:

 - name: sh docker.sh

 - cwd: /var/www

 - require:

 - docker_script

To run this state file, we would run:

salt “*” state.apply docker.install

Take note that we did not call salt “*” state.apply docker/install . This matches how Python works (which Salt
was written in) when accessing modules in sub folders.

Now, let’s verify our Docker installation:

salt “*” cmd.run “docker ps”

Chapter 8: Salt & the SaltStack - Docker & Salt

 | 166

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Do you see something like:

web1:

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

If so, your minions now have docker installed. Was that easy or what?

Git & Salt
Now we’re going to clone a project to our minion(s). In other words, using Salt to run Git commands.

/srv/salt/git/install.sls

git_pkg:

 pkg.installed:

 - name: git

Let’s break this down:
	● git_pkg is the name I have given this block
	● pkg.installed tells Salt install packages
	● name: git is one of the packages to install. We can have a whole list of them here too.

Now run:

salt “*” state.apply git.install

This will ensure that git is installed on our minions.

After we have git installed we can clone our project from:

https://github.com/codingforentrepreneurs/iac-python.git

In this case, we’re going to be using a public repository. To use a private repository, please review Appendix J.

Chapter 8: Salt & the SaltStack - Docker & Salt / Git & Salt

 | 167

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

/srv/salt/app/pull.sls

python_app_repo_clone:

 file.directory:

 - name: /var/www

 cmd.run:

 - name: git clone https://github.com/codingforentrepreneurs/iac-python.git app

 - cwd: /var/www/

 - runas: root

 - creates: /var/www/app/

Let’s break this one down:
	● python_app_repo_clone is the name I have given this block
	● file.directory is a way to ensure your directory/directories are created.
	● - name: /var/www/ is the root destination for our app. If you installed nginx, this directory will already

exist. Using file.directory just ensures that it does exist.
	● cmd.run : This is how we run commands that we need to run.
	● - name: git clone https://github.com/codingforentrepreneurs/iac-python.git app this is how we declare a

command we want to run
	● - cwd this is the working directory we want to run the command
	● - runas gives you the option to use a different user to run this command. We are using root as to simplify

learning Salt.
	● - creates You should declare this if your command will end up creating a least 1 directory

Now, I can run both of these commands one after another like:

salt “*” state.apply git.install

salt “*” state.apply app.pull

Or I can create a Salt module to use both of these modules:

/srv/salt/webapp.sls

include:

 - git.install

 - app.pull

 - docker.install

Chapter 8: Salt & the SaltStack - Git & Salt

 | 168

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Each one of these is referenced like this:
	● git.install → /srv/salt/git/install.sls
	● app.pull → /srv/salt/app/pull.sls
	● docker.install → /srv/salt/docker/install.sls

Now I can simply run:

salt “*” state.apply webapp

How cool is that?

Templates & Salt
At this point, running salt “*” state.apply webapp gives us many solid advantages couple with at least 2 major
flaws:

	● docker.install will always attempt to install docker
	● app.pull will always attempt to clone our app.

What if we could run parts of these modules based on the current state? That’s what templates allow for us to do.

Remember this command:

salt “*” cmd.run “echo ‘hello world’”

For example, let’s verify docker is installed:

salt “*” cmd.run ‘command -v docker’

The cmd.run allows us to execute code on our minions at will. We can use something similar within an state
module (.sls):

/srv/salt/docker/install.sls

{% set has_docker = salt[‘cmd.shell’](‘command -v docker’) %}

{% if not has_docker %}

Chapter 8: Salt & the SaltStack - Git & Salt / Templates & Salt

 | 169

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

docker_script:

 cmd.run:

 - name: curl https://get.docker.com/ -o docker.sh

 - cwd: /var/www

docker_install:

 cmd.run:

 - name: sh docker.sh

 - cwd: /var/www

 - require:

 - docker_script

{% endif %}

Let’s dig a bit deeper

{% set has_docker = salt[‘cmd.shell’](‘command -v docker’) %}

The above line is Jinja template context item. Jinja is built-in to salt as it’s a popular Python template rendering
system (fun fact, it’s inspired by the Django Template Engine but made to be used in any Python project not just
Django).

	● {%` and `%} declare a jinja-managed item. This string combination is rarely used for anything besides
templates.

	● set has_docker allows us to set the variable has_docker so we can use it throughout our sls file.
	● salt[‘cmd.run’] is how we can run salt commands _within_ an sls file.
	● command -v is a way to check if any given command exists on a system command -v docker is merely

checking if the docker command exists.
	● Now, this entire block uses salt to check if docker exists on any given minion and sets that result to the

variable has_docker.

The block starting with {% if not has_docker %} and ending with {% if endif %} includes Salt configuration that
only be executed if the minion does not have Docker).

Chapter 8: Salt & the SaltStack - Templates & Salt

 | 170

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

To Clone or not to Clone?
There are two ways to think about how we manage our web application code: replacement or updating.
With replacement, we would simply remove the folder rm -rf /var/www/app/ and run git clone .. again.

With updating, we would use git to update the current state of the code. Personally, I think running git pull is a
better method as it leverages the built-in features of version control. Further, it can let us know if any of the code
was changed on a minion (something we don’t want).

Now that we understand templates inside an sls let’s update ours:

/srv/salt/app/pull.sls

sls

{% if not salt[‘file.directory_exists’](‘/var/www/app/’) %}

python_app_repo:

 file.directory:

 - name: /var/www

 cmd.run:

 - name: git clone https://github.com/codingforentrepreneurs/iac-python.git app

 - cwd: /var/www/

 - runas: root

 - creates: /var/www/app/

{% else %}

python_app_repo_reset:

 cmd.run:

 - name: git reset --hard HEAD

 - cwd: /var/www/app/

 - runas: root

python_app_repo:

 cmd.run:

 - name: git pull origin main

 - cwd: /var/www/app/

 - runas: root

{% endif %}

Now, let’s break this down:
	● salt[‘file.directory_exists’](‘/var/www/app/’) this command will tell us if this directory exists or not, if not,

it will clone the repo into the directory /var/www/app/
	● python_app_repo_clone this block is the same as before
	● python_app_repo_reset this is where we will force a code reset. The purpose is to ensure that if our code

as changed on our mininion, all of those changes would be reset. In this step, you could do additional git
configuration to see what changes may have occurred. For example, you could make a new branch, com-
mit the files, and push those changes onto your repo with this new branch.

	● python_app_repo_pull this block merely pulls a new version of our code.

Chapter 8: Salt & the SaltStack - To Clone or not to Clone?

 | 171

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Is this simple or what?

Now when we run:

salt “*” state.apply app.pull

Salt will automatically pull the latest code OR it will clone it; whichever the minion needs.

This sets us up perfectly to start building our web app’s container with Docker.

Build Docker Image with Salt
In the IaC Python repo, there’s a Dockerfile that contains:

FROM python:3.8-slim

COPY . /app

WORKDIR /app

RUN apt-get update && \

 apt-get install -y \

 build-essential \

 python3-dev \

 python3-setuptools \

 gcc \

 make

Create a virtual environment in /opt

RUN python3 -m venv /opt/venv

Install requirments to new virtual environment

RUN /opt/venv/bin/pip install -r requirements.txt

purge unused

RUN apt-get remove -y --purge make gcc build-essential \

 && apt-get autoremove -y \

 && rm -rf /var/lib/apt/lists/*

make entrypoint.sh executable

RUN chmod +x entrypoint.sh

CMD [“./entrypoint.sh”]

Chapter 8: Salt & the SaltStack - To Clone or not to Clone? / Build Docker Image with Salt

https://github.com/codingforentrepreneurs/iac-python.git

 | 172

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Check https://github.com/codingforentrepreneurs/iac-python for the most up to date version of this Dockerfile
and related code.

This Dockerfile is the basis for our container image. In order to run this container image, we need to have a built
one on our system (this is certainly not the only way but it is what we’ll do).

To build this container image, we would run:

docker build -t py_web_app -f /var/www/app/Dockerfile /var/www/app/

Or simply:

cd /var/www/app/

docker build -t py_web_app -f Dockerfile .

To invoke this command on your master just run:

salt “*” cmd.run “cd /var/www/app/;docker build -t py_web_app -f Dockerfile .”

Naturally, we want command to be automated (and remembered) so we’ll create another state file:

/srv/salt/docker/build.sls

{% set has_docker = salt[‘cmd.shell’](‘command -v docker’) %}

{% if has_docker %}

docker_build:

 cmd.run:

 - name: docker build -t py_web_app -f Dockerfile .

 - cwd: /var/www/app/

{% endif %}

Now we can just include the template declarations we need.

So, why don’t we just combine /srv/salt/docker/install.sls and /srv/salt/docker/build.sls ?

Chapter 8: Salt & the SaltStack - Build Docker Image with Salt

https://github.com/codingforentrepreneurs/iac-python

 | 173

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

You absolutely can but I think of it this way:

salt “*” state.apply docker.build

This one line makes it clear that I need docker to build my webapp. Using just, salt “*” state.apply docker.install
seems to imply that I am merely installing Docker and not building anything.

Before we continue, let’s ask ourselves, is /srv/salt/docker/build.sls really the right name for this? My answer:
no. Over time you’ll start to develop an intuition for where files should live. It’s true the /srv/salt/docker/build.
sls command builds a docker container, but which docker container? Our project is simple right now so we know
exactly which container. But as our project grows, we do not want the situation where we’re writing:

	● /srv/salt/docker/build.sls
	● /srv/salt/docker/build2.sls
	● /srv/salt/docker/build3.sls
	● /srv/salt/docker/build4.sls

or even

	● /srv/salt/docker/build-webapp.sls
	● /srv/salt/docker/build-database.sls

And so on. No, instead I am going to change the file to the following:

/srv/salt/app/docker/build.sls

{% set has_docker = salt[‘cmd.shell’](‘command -v docker’) %}

{% if has_docker %}

docker_build:

 cmd.run:

 - name: docker build -t py_web_app -f Dockerfile .

 - cwd: /var/www/app/

{% endif %}

So Now, when we need to update our state we run:

salt “*” state.apply app.docker.build

Chapter 8: Salt & the SaltStack - Build Docker Image with Salt

 | 174

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Although this seems to add complexity, following this format will ensure that as our services grow, we can always
build them like this:

	● salt “*” state.apply app.docker.build
	● salt “*” state.apply db.docker.build
	● salt “*” state.apply load_balancer.docker.build
	● salt “*” state.apply redis.docker.build

At a glance we can see the above commands will build our app , our database , our load_balancer , and redis ,
all using Docker.

The Salt Top File
This whole time we have seen commands like:

salt “*” state.apply docker.install

salt “*” state.apply app.pull

salt “*” state.apply app.docker.build

We know that * will run each state module against all minions. For learning purposes, this is fine. In practice,
we want to use the Salt Top file. Before we do, let’s remember that you can run the above commands against the
specific minion itself

salt “web1” state.apply docker.install

salt “web1” state.apply app.pull

salt “web1” state.apply app.docker.build

Or better yet, we can use a pattern to match to:

salt “web[0-9]” state.apply docker.install

salt “web[0-9]” state.apply app.pull

salt “web[0-9]” state.apply app.docker.build

But what if we could just run

salt “*” state.apply

Chapter 8: Salt & the SaltStack - Build Docker Image with Salt / The Salt Top File

 | 175

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

And it just work? Introducing the Salt Top File:

/srv/salt/top.sls

base:

 ‘*’:

 - git.install

 - docker.install

 ‘web[0-9]’:

 - app.pull

 - app.build

Let’s break this down:
	● base . this is related to different environments that Salt can manage. We’re skipping this unneeded com-

plexity for this series but the idea is you can have different Salt environments (Dev, Prod, etc).
	● ’*’ will apply git.install and docker.install in that order to all minions.
	● ’web[0-9]’ will match the pattern for all minions with the names web1 , web2 , and so on. This is nice for

scaling horizontally.
	● ’web[0-9]’ will also run app.pull and app.docker.build on each minion that matches this pattern.

After we have this Top File (always at /srv/salt/top.sls), we can just simply run:

salt “*” state.apply

And all of our minions will fall inline with what their state should be (assuming we have correct sls state modules
in the first place).

But, the Docker Run Command!
Yes, it’s true we have yet to implement the docker run command for our project. This was done on purpose to
bring everything together.

`/srv/salt/app/run.sls`

sls

{% set has_running_containers = salt[‘cmd.shell’](‘docker ps -a -q’) %}

{% if has_running_containers %}

docker_stop_all:

 cmd.run:

Chapter 8: Salt & the SaltStack - The Salt Top File / But, the Docker Run Command!

 | 176

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

 - name: docker stop $(docker ps -aq)

docker_remove_all:

 cmd.run:

 - name: docker rm $(docker ps -aq)

{% endif %}

docker_run:

 cmd.run:

 - name: docker run --restart always -e PORT=8001 -p 80:8001 -d py_web_app

Let’s break down what’s happening here:
	● salt[‘cmd.shell’](‘docker ps -a -q’) this is checking if any containers are running on my webapp minions
	● {% if has_running_containers %} if containers are running, stop them (the docker_stop_all block), and

remove them (the docker_remove_all block).
	● docker_run this block will run our container.

Let’s break down the docker command docker run --restart always -e PORT=8001 -p 80:8001 -d py_web_app
further:

	● docker run will run a container, we could do docker run my_container_tag but we need more configura-
tion

	● --restart always is a configuration item that will cause this container to start running again if the minion
restarts (or the container fails for some reason).

	● -e PORT=8001 This adds an environment variable PORT set to 8001 . In this project, that environment
variable is where the web server (via gunicorn) will run on within docker.

	● -p 80:8001 this maps the external port 80 so that our minion’s IP address can be mapped to port the
running docker container port 8001.

	● -d this means run this container in detached mode. This is very important especially when running in a
Salt (or IaC) environment.

Now we just need to update our top file:

/srv/salt/top.sls

base:

 ‘*’:

 - git.install

 - docker.install

 ‘web[0-9]’:

 - app.pull

 - app.build

 - app.run

Chapter 8: Salt & the SaltStack - But, the Docker Run Command!

 | 177

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Before we move on, let’s update this block:

 ‘web[0-9]’:

 - app.pull

 - app.build

 - app.run

to

 ‘web[0-9]’:

 - app.init

Then in /srv/salt/app/init.sls:

include:

 - pull

 - build

 - run

So finally ending up with the following top file:

/srv/salt/top.sls

base:

 ‘*’:

 - git.install

 - docker.install

 ‘web[0-9]’:

 - app

When you have init.sls within a folder, you can just use the folder name. So /srv/salt/app/init.sls is app instead
of app.init

Chapter 8: Salt & the SaltStack - But, the Docker Run Command!

 | 178

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Using Pillars
Pillars are great way to share data across minions and they “allow confidential, targeted data to be securely sent
only to the relevant minion.” Docs

Let’s create our first pillar so we can move around our webapp repo more easily:

Fisrt create the following:

mkdir /srv/pillar

/srv/pillar/data.sls

git_repo: https://github.com/codingforentrepreneurs/iac-python.git

docker_tag_name: iac_app

docker_port: 8002

Now, the Pillar Top File:

/srv/pillar/top.sls

base:

 ‘*’:

 - data

Now refresh this new pillar data:

salt ‘*’ saltutil.refresh_pillar

We can verify this data using:

salt ‘*’ pillar.items

In /srv/pillar/data.sls we have the value git_repo we can use this value in our state template. Let’s update our
app pull template:

Chapter 8: Salt & the SaltStack - Using Pillars

https://docs.saltproject.io/en/latest/topics/tutorials/pillar.html

 | 179

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

/srv/salt/app/pull.sls

{% if not salt[‘file.directory_exists’](‘/var/www/app/’) %}

python_app_repo:

 file.directory:

 - name: /var/www

 cmd.run:

 - name: git clone {{ pillar[‘git_repo’] }} app

 - cwd: /var/www/

 - runas: root

 - creates: /var/www/app/

{% else %}

python_app_repo_reset:

 cmd.run:

 - name: git reset --hard HEAD

 - cwd: /var/www/app/

 - runas: root

python_app_repo:

 cmd.run:

 - name: git pull origin main

 - cwd: /var/www/app/

 - runas: root

{% endif %}

Notice how all we added was {{ pillar[‘git_repo’] }} ? Now updating our git repo is as simple as updating the value
in /srv/pillar/data.sls

Let’s do the same thing for the docker_tag_name and docker_port value by updating the following:
	● /srv/salt/app/docker/build.sls
	● /srv/salt/app/docker/run.sls

First /srv/salt/app/docker/build.sls:

{% set has_docker = salt[‘cmd.shell’](‘command -v docker’) %}

{% if has_docker %}

docker_build:

 cmd.run:

 - name: docker build -t {{ pillar[‘docker_tag_name’] }} -f Dockerfile .

 - cwd: /var/www/app/

{% endif %}

Chapter 8: Salt & the SaltStack - Using Pillars

 | 180

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now /srv/salt/app/docker/run.sls

{% set has_running_containers = salt[‘cmd.shell’](‘docker ps -a -q’) %}

{% if has_running_containers %}

docker_stop_all:

 cmd.run:

 - name: docker stop $(docker ps -a -q)

docker_remove_all:

 cmd.run:

 - name: docker rm $(docker ps -a -q)

{% endif %}

docker_run:

 cmd.run:

 - name: docker run --restart always -e PORT={{ pillar[‘docker_port’] }} -p 80:{{ pil-

lar[‘docker_port’] }} -d {{ pillar[‘docker_tag_name’] }}

Chapter 8: Salt & the SaltStack - Using Pillars

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Thank you for reading Try IaC. It was a lot of fun putting this book

together as well as making the related videos. Please contact us

if you have ideas for future projects at hello@teamcfe.com.

Thank you!

mailto:hello@teamcfe.com

 | 183

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix A

Add SSH Keys to the Linode Console
To speed up nearly any project you work with on Linode, you’ll need to add in your SSH keys. SSH Keys are
essentially passwords between computers for secure access (SSH stands for Secure Shell). Adding them into the
Linode Console makes it much easier for your workstation(s) to work with your virtual machines.

Keep in mind that this is a shortcut / helpful method to add SSH Keys with very little long term work. Sometimes,
especially when you have a large team, you may need to manually add SSH keys to the instance(s) you want to
give team members (or other virtual machines) access too.

Let’s this section be your guide.

Step 1: Login to the Console

Step 2: Navigate to Linode-stored SSH Keys
	● You can go to this link

or

	● Click your profile dropdown.
	● Click SSH Keys (highlighted in red)

Profile Dropdown

Appendix A: Add SSH Keys to the Linode Console

https://login.linode.com/login
https://cloud.linode.com/profile/keys
https://cloud.linode.com/profile/keys

 | 184

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Step 3: Add you SSH Public Key
	● Click Add an SSH Key (highlighted in red)

Profile Navigation

	● Open up Terminal (macOS / Linux users) or PowerShell (Windows users)
	● Copy default SSH Public Key

macOS / Linux users:

cat ~/.ssh/id_rsa.pub | pbcopy

Windows users

type ~\.ssh\id_rsa.pub | clip

	● Paste it into your Linode Console and add a Label like:

	● Click Add Key

Appendix A: Add SSH Keys to the Linode Console

 | 185

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Step 4: Verify Key Added
In the SSH Keys section of your profile, you should see something like:

When you go to provision a Linode Instance you should see that same key on that page as well:

Troubleshooting

Where are my local SSH Keys?
macOS / Linux / Windows users:

Just run:

ls ~/.ssh

If you have keys, you’ll see them here.

Appendix A: Add SSH Keys to the Linode Console

https://cloud.linode.com/profile/keys
https://cloud.linode.com/linodes/create

 | 186

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

SSH Key Missing or Cannot Copy SSH Key

In Step 3 , when you did:

macOS / Linux users:

cat ~/.ssh/id_rsa.pub | pbcopy

Windows users

type ~\.ssh\id_rsa.pub | clip

Did you get an error?

If so, there’s a good chance you do not have an ssh key. Go to Appendix B to Generate a new key.

After your SSH Key generated, you can return to Step 3

I added my SSH key to a Linode Instance (or any Virtual Machine) and can no
longer login, what to do?

This will require you to use a Secure Shell Session (ie ssh session) with the Linode Instance’s root password
something like:

ssh -o PreferredAuthentications=password -o PubkeyAuthentication=no your_root_user@your_

linode_ip

	● Replace your_root_user with your root username (probably just root)
	● Replace your_linode_ip with something like 45.79.58.61

Appendix A: Add SSH Keys to the Linode Console

 | 188

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix B

Generate SSH Keys
SSH Keys are great for seamless (and often password-less) access to virtual machines. We use SSH Keys a lot with
IaC automation tools so it’s important we know how to generate them:

Step 1: Open Command Line
Open:

	● Terminal (macOS / Linux users)
	● PowerShell (Windows users)
	● You can also use the command line on VSCode and similar programs

Step 2: Use ssh-keygen
1. Generate a key with ssh-keygen

macOS / Linux / Windows users:

ssh-keygen

You should see:

Replace /Users/cfe/.ssh/id_rsa with your local system path(s) including your user instead of mine (cfe).

2. Hit return/enter to accept the default location.

3. Need to Overwrite? (Might not show up)
Is it asking you to overwrite the current value? If so, say n like:

This means your key has already been generated. You should only overwrite your key if you know your old one is
not in use somewhere OR you want to make the old one invalid.

Appendix B: Generate SSH Keys

 | 189

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

It’s incredibly common to issue SSH keys so getting comfortable with adding or removing them is a great idea.

4. Generate Passphrase

That means you are creating a new SSH key. You can add a passphrase if you’d like but keep in mind that what
you type will be hidden. Having a passphrase is a good practice but it’s okay while you learn to leave it blank (or
not have one). Later you can overwrite your ssh key (like right above here) with a passphrase.

5. Verify Key
After you finish the passphrase step, you should see:

Now open up your command line (ie Terminal/PowerShell / etc), and run:

macOS / Linux users:

cat ~/.ssh/id_rsa.pub

Windows users

type ~\.ssh\id_rsa.pub

Appendix B: Generate SSH Keys

 | 190

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

You should see something like:

This is a public key (hence the .pub in id_rsa.pub) and can be shared. The private key (id_rsa without .pub)
should never be shared.

Appendix B: Generate SSH Keys

 | 192

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix C

Create a Remote Workstation
I highly recommend using a Remote Workstation while you’re learning IaC tools. Remote workstations often
remove issues when installing packages that you need (macOS & Windows run into issues installing many things
that Linux does very easily).

Recommended Reading
	● Add SSH Keys to the Linode Console
	● Generate SSH Keys

We’re going to be using VSCode as our text editor for a simple reason: the Remote-SSH Extension makes a remote
virtual machine workstation feel like you’re working on your local machine. VSCode works identically on macOS,
Windows, & Linux.

Step 1: Login to the Console

Step 2: Create a Linode Instance
Use the following configuration:

	● Image Distribution: Ubuntu 20.04
	● Region: <pick closest to you> (example, pick Dallas, Texas if you’re in Texas like me or you can use Lin-

ode’s speed test tool)
	● Linode Plan: Shared CPU / Nanode 1 GB should suffice for the vast majority of Workstations
	● Linode Label: my-workstation
	● Add Tags: Such as workstation (Optional)
	● Root Password: <set a strong password> (Use Appendix D to create one)
	● SSH Keys: <select a key you already added> (Add keys with Appendix A)
	● Attach a VLAN: can skip
	● Add-ons: can skip
	● After all options are selected, under Linode Summary, click Create Linode

Here are the screenshots:

Image Distribution

Appendix C: Create a Remote Workstation

http://./appendix-1-ssh-keys-in-console
http://./appendix-2-generate-ssh-keys
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://login.linode.com/login
https://cloud.linode.com/linodes/create
https://www.linode.com/speed-test/
https://www.linode.com/speed-test/

 | 193

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Region

Linode Plan

Linode Label & Add Tags

Root Password & SSH Keys

Appendix C: Create a Remote Workstation

 | 194

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Attach a VLAN

Add Ons

Click Create Linode

Appendix C: Create a Remote Workstation

 | 195

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Step 3: VSCode & Extension
	● Download VSCode and install it (it’s free)
	● Download & Install the Remote - SSH extension.

To find extensions:
	● Open VSCode
	● Navigate to the Extensions Marketplace
	● Search for Remote-SSH
	● You should see:

Note: this may require a VSCode restart

Remote SSH Installed

Step 4: Get Linode Instance Details
	● Navigate to your list of Linode Instances
	● Select my-workstation (or whatever you named it in Step 3)
	● Copy your SSH Access string. Something like: ssh root@198.58.107.37 . This includes your username root

and your IP Address for this instance (198.58.107.37). Your IP Address will likely be different. You user will
likely be root . Here’s what it looks like:

Appendix C: Create a Remote Workstation

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://cloud.linode.com/linodes

 | 196

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

And the SSH Info:

Step 5: Update SSH Config
	● Click the Remote button on VSCode

Remote Button

This will open the Remote Menu, select Open SSH Configuration File :

This will open the Select SSH configuration file to update, select your users’ config file much like:

Appendix C: Create a Remote Workstation

 | 197

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Update your config file with:

Host my-linode-workstation

 HostName 198.58.107.37

 User root

	● Replace Host with any name of your choosing (without spaces)
	● Replace HostName with your IP Address
	● Replace User with your User
	● Save the file and close

It will look like:

Step 6: Connect to Host
	● Click the Remote button on VSCode

Appendix C: Create a Remote Workstation

 | 198

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● Click Connect to Host

	● Select my-linode-workstation (or what you named it in Step 3)

	● If it’s your first time connecting to this host, you’ll see:

Select Continue

If you did not setup your SSH Key(s) correctly, you may be prompted for your root password. (Which is fine!)

Step 7: Connected!
Now you have a workstation! Congrats. To reconnect to your workstation just repeat Step 6!

Appendix C: Create a Remote Workstation

 | 200

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix D

Create a Password with Python

Using Secrets
We’ll use the built-in secrets package for Python 3 for this.

Via the command line:

Windows PowerShell

python -c “import secrets;print(secrets.token_urlsafe(32))”

macOS / Linux Terminal

python3 -c “import secrets;print(secrets.token_urlsafe(32))”

via Python3 directly:

python3

import secrets

nbytes = 32

print(secrets.token_urlsafe(nbytes))

pIjVaxanJ0JaxE3AyaswNnWX_emV1C9fo5ng885dzQs

Using UUID
UUIDs are often used as secrets as well although I recommend the above method due to it’s built-in complexity
and that it’s made for generating secrets (UUID is not).

Appendix D: Create a Password with Python

https://docs.python.org/3/library/secrets.html#secrets.token_urlsafe

 | 201

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Via the command line:

Windows PowerShell

import uuid

python -c “import uuid;print(str(uuid.uuid4()))”

macOS / Linux Terminal

python3 -c “import uuid;print(str(uuid.uuid4()))”

via Python3 directly:

#python 3

import uuid

uuid4_str = str(uuid.uuid4())

print(uuid4_str)

1750c27f-c672-4f2c-8b45-0b121b1e9e9e

Appendix D: Create a Password with Python

 | 203

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix E

Create a Linode API Token

Step 1: Login to the Console

Step 2: Navigate to API Tokens
It should look like:

Step 3. Create a Personal Access Token
	● Label: PyTerra (or call it what you want)
	● Expiry: In 6 months (Choosing never is rarely recommended)
	● Access:

	◦ Images: Read/Write
	◦ IPs: Read/Write
	◦ Linodes: Read/Write
	◦ Node Balancers: Read/Write
	◦ Object Storage: Read/Write
	◦ Volumes: Read/Write

Click Create a Personal Access Token

Appendix E: Create a Linode API Token

https://login.linode.com/login
https://cloud.linode.com/profile/tokens

 | 204

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Add Personal Access Token

Step 4. Copy Token
Do not share this code with anyone unless you know what you’re doing. When in doubt, generate a new key with
steps 1-3.

Copy Personal Access Token

Appendix E: Create a Linode API Token

 | 206

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix F

Create a Linode Object Storage Bucket

Step 1: Login to the Console

Step 2: Navigate to Object Storage
It should look like:

Step 3. Create a new bucket in Object Storage
Click the create button

Configure the new bucket with:
	● Label: try-iac (you’ll have to create a unique one
	● Region: Alanta, GA (or a region near you)
	● Click Create Bucket

Configuration example:

Appendix F: Create a Linode Object Storage Bucket

https://login.linode.com/login
https://cloud.linode.com/object-storage/buckets
https://cloud.linode.com/object-storage/buckets

 | 207

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Now in Object Storage, you should see something like:

This image shows:
	● Bucket Name as try-iac
	● Endpoint as try-iac.us-southeast-1.linodeobjects.com (sometimes referred to as AWS_S3_ENDPOINT_

URL)
	● Region name as Altanta, GA
	● Region ID as us-souteast-1 (sometimes referred to as AWS_S3_REGION_NAME)

Step 4. Create Access Keys to your bucket(s).
Still in Object Storage, go to this link or click Access Keys

Now click the button Create Access Key

In vCreate Access Key , add the following options:

	● Label: try-iac-access-key
	● Limited Access: Ensure Checked
	● Under your bucket (mine is try-iacv) ensure Read/Write
	● Click vCreate Access Key

Appendix F: Create a Linode Object Storage Bucket

https://cloud.linode.com/object-storage/buckets
https://cloud.linode.com/object-storage/access-keys
https://cloud.linode.com/object-storage/buckets
https://cloud.linode.com/object-storage/access-keys

 | 208

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The whole thing should look like:

Step 5. Save Access Keys
You now have 2 keys that you can save:

	● Access Keyv (sometimes called Public Keyv, AWS_S3_ACCESS_KEY_ID , and AWS_ACCESS_KEY_ID)
	● Secret Key (sometimes called Secret Access Key , AWS_S3_SECRET_ACCESS_KEY , and AWS_SECRET_AC-

CESS_KEY)

Keep these safe. Regenerate keys as needed or every 3-6 months.

Here’s what mine look like:

Appendix F: Create a Linode Object Storage Bucket

 | 210

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix G

Minor Installations
This appendix is for various installations you may need throughout the book.

1 homebrew (macOS Only)
Visit brew.sh and copy and paste the command into your terminal. At the time of this writing the command is:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/in-

stall.sh)"

This command is subject to change so always use brew.sh as your best installation source

2. tree to review folder structure
Tree is used to list the folder (directory) & file hierarchy

Linux Ubuntu:

sudo apt-get install tree

macOS

brew install tree

Windows
	● No stable solution found

Appendix G: Minor Installations

https://brew.sh
https://brew.sh

 | 212

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix H

Docker & Python Web Apps
Throughout this book we will use Docker to run our web application. Docker is a great way to run nearly any web
application regardless of the tech stack -- Python, Node, Java, Ruby, PHP, Nginx, Apache, etc.

It might feel more complex to use Docker, but it actually simplifies our environments significantly because if you
can get Docker installed and running, your Docker-based app should run as well.

While it’s not always that simple, it very often is. Here’s how Docker can simply our life.

Without Docker:
	● Machine 1: Python 3.7 web app
	● Machine 2: Node.js 16.13 web app
	● Machine 3: Python 3.9 web app
	● Machine 4: Nginx
	● Machine 5: Node.js 17.3 web app

With Docker:
	● Machine 1: Docker
	● Machine 2: Docker
	● Machine 3: Docker
	● Machine 4: Docker
	● Machine 5: Docker
	● Machine N: Docker

The idea here, if Docker is installed it can save us a lot of complexity in our infrastructure configuration. Let’s take
a look at a simple example:

git clone https://github.com/codingforentrepreneurs/iac-python

cd iac-python

docker build -t iac-python -f Dockerfile .

docker run --restart always -p 80:8001 -e PORT=8001 -d iac-python

Once you have Docker installed, it will be this simple for nearly every Docker-based project.

Let’s break down what’s going on above:

Appendix H: Docker & Python Web Apps

 | 213

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

	● git clone ... : this is clone (or copying) a pre-existing project that I created for this book. This project is
dead-simple but has a number of system-based requirements. Review this project here on GitHub.

	● docker build ... : This is how you build a “container image” which is essentially a mini isolated operating
system.

	◦ � -f Dockerfile : This tells docker build the location that a Dockerfile exists. A Dockerfile is essentially a
set of instructions that docker needs to follow to create our container image.

	◦ �-t iac-python : This is called tagging and it’s how we give a name to our Docker container image that
we can use later. It’s a good idea to use unique tags that help identify your container image as you see
I tagged mine with the exact same repository name I gave it on github. You can also append to the tag
with -t iac-python:some-other-tag like -t iac-python:v1 or v-t iac-python:v2

	◦ �. At the end of the build command we use a period. This denotes to build this container image within
the current directory. You can put any path you want here just so long the Dockerfile is setup to handle
different paths correctly.

The docker build command takes time to run because it’s going to be download everything your system needs
for the project to run as per what you put in the Dockerfile.

	● docker run ... : This is how you run an already-built Docker image. I tend to think about this as “turning on”
our Docker container image -- ie turning on a docker-based web application or turning on a docker-based
database.

	● -e PORT=8001 . This sets an environment variable for our Docker container image. In our case, this will
ensure our Python web app runs on port 8001 within the Docker container.

	● -p 80:8001 This maps port 80 to port 8001 . Port 80 is the default port for web traffic so we use this port
to allow this pre-built Docker image that’s actually a Docker-based python web application be exposed to
the world.

	● --restart always If our machine running this container image restarts, this running container image will
restart as long as is it’s running in detach mode (-d)

	● -d means to run this Docker container in “detached” mode which is essentially turning the running image
into a background service.

	● iac-python is simply the name of the tagged image from the build phase.

I could write an entire book on Docker so this appendix was meant to help with context of how we use it through-
out the book. If you want more, please shoot me a tweet @justinmitchel.

Appendix H: Docker & Python Web Apps

https://github.com/codingforentrepreneurs/iac-python
https://twitter.com/justinmitchel

 | 215

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix I

Basic Bash Scripts Arguments
& Conditions
This is a quick guide on using positional arguments in Bash scripts.

Take the following script call:

sudo sh my_script.sh my_param my_other_param

my_param and my_other_param correspond to the 1 and 2 positional arguments. Let’s take a look at how we
can see this in the script my_script.sh :

#!/bin/bash

echo “Hello there param 1: $1”

echo “Hello there param 2: $2”

FALLBACK_ARG=${3:-”fallbackarg”}

echo “This script does not have a third argument, instead it will use: $FALLBACK_ARG”

Conditional Statements in Bash Scripts

If I wanted to stop this script if the 4 th positional argument is omitted, then we would update our script to:

#!/bin/bash

if [$1]; then

 echo “Hello there param 1: $1”

fi

echo “Hello there param 2: $2”

FALLBACK_ARG=${3:-”fallbackarg”}

echo “This script does not have a third argument, instead it will use: $FALLBACK_ARG”

if [-z “$4”]; then

 echo “Argument 4 does not exist exiting.”

 exit 22

Appendix I: Basic Bash Scripts Arguments & Conditions

 | 216

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

fi

echo “run the rest!”

The if []; then fi block is a basic way to run conditional statements in a bash script. The -z “$4” is a simple condi-
tion to check if the 4 argument is empty or not.

There are many more ways to handle conditions in Bash scripts.

Appendix I: Basic Bash Scripts Arguments & Conditions

 | 218

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Appendix J

Cloning a Private Github Repo
Version control through git is a modern marvel of programming excellence. Since git is a vast and fundamental
tool, I’ll keep this appendix highly focused on using your private code repositories through a managed service (ie
Github).

If you do not know how to use git I recomend going to https://git-scm.com and going through some of the offo-
cial getting started guides.

I use Github Private Repositories for the vast majority of my non open-sourced projects; Gitlab is an outstanding
alternative but we’ll leave that for another time.

Technically, a private repo works exactly as a public repo with the major exception: you need permission to view/
fork/clone the code.

Before we get started I am going to assume that you have the following:
	● git installed
	● A github.com account
	● A private repository (that your account has access to)
	● A virtual machine, such as a Linode Instance, that currently lacks access to the private repo

Repository not found
When you have a public repo, cloning code is very easy:

git clone https://github.com/codingforentrepreneurs/iac-python.git

This will download all of the files in the repo for you to use.

A private repo, on the other hand will yield a different result:

git clone https://github.com/codingforentrepreneurs/iac-python-private.git

Appendix J: Cloning a Private Github Repo

https://git-scm.com
https://git-scm.com

 | 219

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Yields:

git clone https://github.com/codingforentrepreneurs/iac-python-private.git

Cloning into ‘iac-python-private’...

Username for ‘https://github.com’:

Hang on, it’s asking for my Username and Password to GitHub? I don’t want that on this machine.

or you’ll see:

git clone github.com/codingforentrepreneurs/iac-python-private.git

fatal: repository ‘github.com/codingforentrepreneurs/iac-python-private.git’ does not ex-

ist

Notice that the first one uses https and the second does not. You must use https for personal access tokens.

There’s two things to check right now:
	● Does the repository actually exist?
	● Does my current git user have permssion to the repository?

Does the repository actually exist?
Seeing repository ‘github.com/codingforentrepreneurs/iac-python-private.git does not exist is misleading since
the repo does exist I just did not include https . Sometimes, though, the repo just simply does not exist.

Does my current git user have permssion to the repository?
I can’t tell you how many times I was logged in as a different Github user only to find that user was not a
Collaborator on the repo itself.

The easiest way to check is my grabbing your local git user email:

git config --global user.email

Now you can navigate to your Github Email Settings to verify this email exists in your github account.

After you verify your email, be sure to check the private repo’s settings as well by going to something like:

https://github.com/codingforentrepreneurs/iac-python-private/settings/access

Appendix J: Cloning a Private Github Repo

https://github.com/settings/emails

 | 220

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

The format is https://github.com/<GITHUB_USERNAME>/<REPO_NAME>/settings/access

Generate a Github Personal Access Token
The official docs are very detailed so I’ll just summarize it here.

1.	 Login to Github
2.	 Navigate to Developer Settings
3.	 Select Personall access token
4.	 Click _Generate new token_
5.	 Setup:

	◦ Note: try_iac_book_token
	◦ Expiration: 30 Days
	◦ Selected Scopes:

	◦ [x] Repo (all sub items too)
	◦ [x] Workflow

6.	 Click Generate token
7.	 Save result, something like 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 locally. This is your Github

Personal Access Token.

Using a Github Personal Access Token
to access a Private Repo
Now, we’ll just run:

export TOKEN=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

git clone https://${TOKEN}:x-oauth-basic@github.com/codingforentrepreneurs/iac-python-pri-

vate.git

And that’s it. How cool is that? Simple and doesn’t require your github username and password. Plus, you can
deactivate/revoke this token at any time.

Appendix J: Cloning a Private Github Repo

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://github.com/settings/apps

 | 221

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

About Akamai

Akamai powers and protects life online. Leading companies worldwide choose Akamai to build, deliver,
and secure their digital experiences — helping billions of people live, work, and play every day. With the
world's most distributed compute platform — from cloud to edge — we make it easy for customers to
develop and run applications, while we keep experiences closer to users and threats farther away. Learn
more about Akamai's security, compute, and delivery solutions at akamai.com and akamai.com/blog,
or follow Akamai Technologies on Twitter and LinkedIn.

https://www.akamai.com/
http://akamai.com/blog
https://twitter.com/Akamai
https://www.linkedin.com/company/akamai-technologies/

I NF RASTR UCTURE AS CODE

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Cloud Computing
Developers Trust

linode.com | Support: 855-4-LINODE | Sales: 844-869-6072

249 Arch St., Philadelphia, PA 19106 Philadelphia, PA 19106

https://linode.com
http://linode.com

